Advertisement

Accuracy evaluation of a mitral valve surgery assistance system based on optical tracking

  • Sandy EngelhardtEmail author
  • Raffaele De Simone
  • Sameer Al-Maisary
  • Silvio Kolb
  • Matthias Karck
  • Hans-Peter Meinzer
  • Ivo Wolf
Original Article

Abstract

Purpose

Mitral valve reconstruction is a widespread surgical method to repair incompetent mitral valves, which usually includes implantation of a ring prosthesis. To date, intraoperative analysis of the mitral valve is merely based on visual assessment using simple surgical tools, which might not allow for accurate assessment of the complex anatomy.

Methods

We propose a novel intraoperative computer-based assistance system, which combines passive optical tracking technology with tailored measurement strategies applicable during different phases of the intraoperative workflow. Based on the assessment of the valvular apparatus by customized tracked instruments, the system (1) generates an enhanced three-dimensional visualization, which (2) incorporates accurate quantifications and (3) provides assistance, e.g., in terms of virtual prosthesis selection.

Results

Phantom experiments in a realistic environment revealed a high system accuracy (mean precision \(0.12 \pm 0.09\) mm and mean trueness \(0.77 \pm 0.39\) mm) and a low user error (mean precision \(0.18 \pm 0.10 \) mm and mean trueness \(0.81 \pm 0.36\) mm). The assistance system was successfully applied five times during open and minimally invasive reconstructive surgery in patients having mitral valve insufficiency. The measurement steps integrate well into the traditional workflow, enhancing the surgeon’s three-dimensional perception and generating a suggestion for an appropriate prosthesis.

Conclusion

The proposed assistance system provides a novel, accurate, and reproducible method for assessing the valvular geometry intraoperatively.

Keywords

Mitral valve geometry Intraoperative computer-assisted measurements Optical tracking 

Notes

Acknowledgments

This work was carried out with support of the German Research Foundation (DFG) as part of project B01, SFB/TRR 125 Cognition-Guided Surgery. We thank the Division of fine mechanics for manufacturing the instruments and Jörg Rodrian for his technical support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or National Research Committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    (1998) ISO 5725–1: Accuracy (trueness and precision) of measurement methods and results-Part 1: General principles and definitionsGoogle Scholar
  2. 2.
    Bauer MA (2007) Tracking Error in Augmented Reality. PhD thesis, Technical University MunichGoogle Scholar
  3. 3.
    Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal 14(2):239–256. doi: 10.1109/34.121791 CrossRefGoogle Scholar
  4. 4.
    Birkfellner W, Hummel J, Wilson E, Cleary K (2008) Tracking devices. In: Peters T, Cleary K (eds) Image-guided interventions, 1st edn. Springer, New York, pp 23–44CrossRefGoogle Scholar
  5. 5.
    Bothe W, Miller DC, Doenst T (2013) Sizing for mitral annuloplasty: where does science stop and voodoo begin? Ann Thorac Surg 95(4):1475–1483. doi: 10.1016/j.athoracsur.2012.10.023 CrossRefPubMedGoogle Scholar
  6. 6.
    Carpentier A (1983) Cardiac valve surgery: the ’French’ correction. J Thorac Cardiovasc Surg 86:323–337PubMedGoogle Scholar
  7. 7.
    Carpentier A, Adams D, Filsoufi F (2010) Carpentier’s reconstructive valve surgery. Saunders/Elsevier, MissouriGoogle Scholar
  8. 8.
    Chassat F, Lavalle S (1998) Experimental protocol of accuracy evaluation of 6-D localizers for computer-integrated surgery: application to four optical localizers. Med Image Comput Computer-Assisted Interv Lect Notes Computer Sci 1496:277–284. doi: 10.1007/BFb005621 Google Scholar
  9. 9.
    Elfring R, de la Fuente M, Radermacher K (2010) Assessment of optical localizer accuracy for computer aided surgery systems. Computer Aided Surg 15(1–3):1–12. doi: 10.3109/10929081003647239 CrossRefGoogle Scholar
  10. 10.
    Engelhardt S, De Simone R, Nabers D, Zimmermann N, Al Maisary S, Beller CJ, Karck M, Meinzer HP, Wolf I (2014a) Intraoperative measurements on the mitral apparatus using optical tracking: a feasibility study. In: Proc SPIE, Medical Imaging, vol 9036, pp 90361L–90367L. doi: 10.1117/12.2043391
  11. 11.
    Engelhardt S, De Simone R, Zimmermann N, Al-Maisary S, Nabers D, Karck M, Meinzer HP, Wolf I (2014b) Augmented reality-enhanced endoscopic images for annuloplasty ring sizing. Augmented Environ Computer-Assisted Interv Lect Notes Computer Sci 8678:128–137. doi: 10.1007/978-3-319-10437-9_14 Google Scholar
  12. 12.
    Engelhardt S, Graser B, Simone RD, Zimmermann N, Karck M, Meinzer HP, Nabers D, Wolf I (2014c) Vermessung des Mitralapparats mit einem optisch getrackten Zeigeinstrument für die virtuelle Annuloplastie. In: Bildverarbeitung für die Medizin 2014. doi: 10.1007/978-3-642-54111-7_48
  13. 13.
    Engelhardt S, Wolf I, Al-Maisary S, Schmidt H, Meinzer HP, Karck M, De Simone R (2016) Intraoperative quantitative mitral valve analysis using optical tracking technology. Ann Thorac Surg (accepted). doi: 10.1016/j.athoracsur.2016.01.018
  14. 14.
    Fitzpatrick J, West J, Maurer JCR (1998) Predicting error in rigid-body point-based registration. IEEE Trans Med Imaging 17(5):694–702. doi: 10.1109/42.736021 CrossRefPubMedGoogle Scholar
  15. 15.
    Frantz DD, Wiles AD, Leis SE, Kirsch SR (2003) Accuracy assessment protocols for electromagnetic tracking systems. Phys Med Biol 48(14):2241–2251. doi: 10.1088/0031-9155/48/14/314 CrossRefPubMedGoogle Scholar
  16. 16.
    Frantz DD, Kirsch SR, Wiles AD (2004) Specifying 3D tracking system accuracy one manufacturer’s views. Bildverarbeitung für die Medizin 2004:234–238. doi: 10.1007/978-3-642-18536-6_48 Google Scholar
  17. 17.
    Franz AM, Seitel A, Servatius M, Zöllner C, Gergel I, Wegner I, Neuhaus J, Zelzer S, Nolden M, Gaa J, Mercea P, Yung K, Sommer CM, Radeleff BA, Schlemmer HP, Kauczor HU, Meinzer HP, Maier-Hein L (2012) Simplified development of image-guided therapy software with MITK-IGT. In: Proc SPIE, Medical Imaging, vol 8316, pp 83162J–83168J. doi: 10.1117/12.911421
  18. 18.
    Graser B, Wald D, Al-Maisary S, Grossgasteiger M, Simone RD, Meinzer HP, Wolf I (2013) Using a shape prior for robust modeling of the mitral annulus on 4D ultrasound data. Int J Comp Assist Radiol Surg 9(4):635–644. doi: 10.1007/s11548-013-0942-3 Google Scholar
  19. 19.
    Grunert P, Darabi K, Espinosa J, Filippi R (2003) Computer-aided navigation in neurosurgery. Neurosurg Rev 26(2):73–99. doi: 10.1007/s10143-003-0262-0 CrossRefPubMedGoogle Scholar
  20. 20.
    Horn B (1987) Closed-form solution of absolute orientation using unit quaternions. J Opt Soc Am A 4(4):629–642. doi: 10.1364/JOSAA.4.000629 CrossRefGoogle Scholar
  21. 21.
    Jannin P, Korb W (2008) Assessment of image-guided interventions. In: Peters T, Cleary K (eds) Image-guided interventions, 1st edn. Springer, New York, pp 531–549CrossRefGoogle Scholar
  22. 22.
    Khadem R, Yeh CC, Sadeghi-Tehrani M, Bax MR, Johnson JA, Welch JN, Wilkinson EP, Shahidi R (2000) Comparative tracking error analysis of five different optical tracking systems. Computer Aided Surg 5(2):98–107. doi: 10.1002/1097-0150(2000)5:2<98:AID-IGS4>3.0.CO;2-H
  23. 23.
    Maisano F, Skantharaja R, Denti P, Giacomini A, Alfieri O (2009) Mitral annuloplasty. MMCTS 2009(0918):mmcts.2008.003,640, doi: 10.1510/mmcts.2008.003640
  24. 24.
    McCulloch P, Altman DG, Campbell WB, Flum DR, Glasziou P, Marshall JC, Nicholl J, Collaboration Balliol, Aronson JK, Barkun JS, Blazeby JM, Boutron IC, Campbell WB, Clavien PA, Cook JA, Ergina PL, Feldman LS, Flum DR, Maddern GJ, Nicholl J, Reeves BC, Seiler CM, Strasberg SM, Meakins JL, Ashby D, Black N, Bunker J, Burton M, Campbell M, Chalkidou K, Chalmers I, de Leval M, Deeks J, Ergina PL, Grant A, Gray M, Greenhalgh R, Jenicek M, Kehoe S, Lilford R, Littlejohns P, Loke Y, Madhock R, McPherson K, Meakins J, Rothwell P, Summerskill B, Taggart D, Tekkis P, Thompson M, Treasure T, Trohler U, Vandenbroucke J (2009) No surgical innovation without evaluation: the IDEAL recommendations. Lancet 374(9695):1105–1112. doi: 10.1016/S0140-6736(09)61116-8 CrossRefPubMedGoogle Scholar
  25. 25.
    Menditto A, Patriarca M, Magnusson B (2006) Understanding the meaning of accuracy, trueness and precision. Accredit Qual Assur 12(1):45–47. doi: 10.1007/s00769-006-0191-z CrossRefGoogle Scholar
  26. 26.
    NDI (2007) IL-1070071: Polaris Tool Design Guide, Rev. 004. Tech. rep., Nothern Digital IncGoogle Scholar
  27. 27.
    NDI (2008) IL-1070116: Passive Polaris Spectra User Guide, Rev. 004. Tech. rep., Nothern Digital IncGoogle Scholar
  28. 28.
    NDI (2015) Polaris Optical Tracking Systems. http://www.ndigital.com/medical/products/polaris-family/, Accessed 15 Oct 2015, Nothern Digital Inc
  29. 29.
    Nolden M, Zelzer S, Seitel A, Wald D, Müller M, Franz AM, Maleike D, Fangerau M, Baumhauer M, Maier-Hein L, Maier-Hein KH, Meinzer HP, Wolf I (2013) The medical imaging interaction toolkit: challenges and advances. Int J Comput Assist Radiol Surg 8(4):607–620. doi: 10.1007/s11548-013-0840-8 CrossRefPubMedGoogle Scholar
  30. 30.
    Perier P, Hohenberger W, Lakew F, Batz G, Diegeler A (2013) Rate of repair in minimally invasive mitral valve surgery. Ann Cardiothorac Surg 2(6):751–757. doi: 10.3978/j.issn.2225-319X.2013.10.12 PubMedPubMedCentralGoogle Scholar
  31. 31.
    Seeburger J, Noack T, Winkfein M, Ender J, Mohr FW (2010) Loop technique. MMCTS 2010(0809):mmcts.2010.004,523. doi: 10.1510/mmcts.2010.004523
  32. 32.
    West J, Maurer JCR (2004) Designing optically tracked instruments for image-guided surgery. IEEE Trans Med Imaging 23(5):533–545. doi: 10.1109/TMI.2004.825614 CrossRefPubMedGoogle Scholar
  33. 33.
    Wiles AD, Thompson DG, Frantz DD (2004) Accuracy assessment and interpretation for optical tracking systems. In: Proc SPIE, Medical Imaging 5367:421–432. doi: 10.1117/12.536128
  34. 34.
    Yaniv Z (2015) Which pivot calibration? In: Proc SPIE, Medical Imaging, vol 9415, p 941527. doi: 10.1117/12.2081348
  35. 35.
    Yaniv Z, Cleary K (2006) CAIMR TR-2006-3: Image-guided procedures: A Review. Tech. rep. Georgetown UniversityGoogle Scholar

Copyright information

© CARS 2016

Authors and Affiliations

  • Sandy Engelhardt
    • 1
    Email author
  • Raffaele De Simone
    • 2
  • Sameer Al-Maisary
    • 2
  • Silvio Kolb
    • 1
  • Matthias Karck
    • 2
  • Hans-Peter Meinzer
    • 1
  • Ivo Wolf
    • 1
    • 3
  1. 1.Medical and Biological InformaticsGerman Cancer Research Center (DKFZ)HeidelbergGermany
  2. 2.Department of Cardiac SurgeryUniversity Hospital HeidelbergHeidelbergGermany
  3. 3.Department of Computer ScienceMannheim University of Applied ScienceMannheimGermany

Personalised recommendations