Advertisement

Progressive internal landmark registration for surgical navigation in laparoscopic gastrectomy for gastric cancer

  • Yuichiro HayashiEmail author
  • Kazunari Misawa
  • David J. Hawkes
  • Kensaku Mori
Original Article

Abstract

Purpose

A surgical navigation system supports the comprehension of anatomical information during surgery. Patient-to-image registration is the alignment process between CT volume and patient coordinate systems. Achieving accurate registration in the surgical navigation of laparoscopic surgery is very challenging due to soft tissue deformation. This paper presents a new patient-to-image registration method based on internal anatomical landmarks for improving registration accuracy in the surgical navigation of laparoscopic gastrectomy for gastric cancer.

Methods

Our proposed registration method progressively utilizes internal anatomical landmarks. In laparoscopic gastrectomy for gastric cancer, the surgeon cuts the blood vessels around the stomach. The positions of the cut vessels are sequentially used as fiducials for registration during surgery. The proposed method uses a weighted point-based registration method for computing the transformation matrix using the fiducials both on the body surface and on the blood vessels. When a blood vessel is cut during surgery, the proposed progressive registration method measures the cut vessel’s position and computes a transformation matrix by adding the cut vessel as a fiducial.

Results

We applied our proposed progressive registration method using the positional information of the blood vessels acquired during laparoscopic gastrectomy in 20 cases. We evaluated it using target registration error in four blood vessels. The average target registration error in the four blood vessels was 12.6 mm and ranged from 2.1 to 32.9 mm.

Conclusion

Since the proposed progressive registration can reduce registration error, our proposed method is very useful for the surgical navigation of laparoscopic gastrectomy. Our proposed progressive registration method might increase the accuracy of surgical navigation in laparoscopic gastrectomy.

Keywords

Surgical navigation Registration Laparoscopic surgery Laparoscopic gastrectomy Gastric cancer 

Notes

Acknowledgments

The authors thank our colleagues for suggestions and advice. This work was supported in part by a Health and Labour Sciences Research Grant from the Ministry of Health Labour and Welfare, by the Practical Research for Innovative Cancer Control from Japan Agency for Medical Research and Development, AMED, and by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology and the Japan Society for the Promotion of Science (26108006, 25242047, 26560255).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

The study was approved by the institutional review board of the Aichi Cancer Center.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Kitano S, Iso Y, Moriyama M, Sugimachi K (1994) Laparoscopy-assisted Billroth I gastrectomy. Surg Laparosc Endosc 4:146–148PubMedGoogle Scholar
  2. 2.
    Etoh T, Inomata M, Shiraishi N, Kitano S (2013) Minimally invasive approaches for gastric cancer—Japanese experiences. J Surg Oncol 107:282–288. doi: 10.1002/jso.23128 CrossRefPubMedGoogle Scholar
  3. 3.
    Lee SW, Shinohara H, Matsuki M, Okuda J, Nomura E, Mabuchi H, Nishiguchi K, Takaori K, Narabayashi I, Tanigawa N (2003) Preoperative simulation of vascular anatomy by three-dimensional computed tomography imaging in laparoscopic gastric cancer surgery. J Am Coll Surg 197:927–936. doi: 10.1016/j.jamcollsurg.2003.07.021 CrossRefPubMedGoogle Scholar
  4. 4.
    Iino I, Sakaguchi T, Kikuchi H, Miyazaki S, Fujita T, Hiramatsu Y, Ohta M, Kamiya K, Ushio T, Takehara Y, Konno H (2013) Usefulness of three-dimensional angiographic analysis of perigastric vessels before laparoscopic gastrectomy. Gastric Cancer 16:355–361. doi: 10.1007/s10120-012-0194-x CrossRefPubMedGoogle Scholar
  5. 5.
    Marescaux J, Rubino F, Arenas M, Mutter D, Soler L (2004) Augmented-reality-assisted laparoscopic adrenalectomy. J Am Med Assoc 292:2211–2215. doi: 10.1001/jama.292.18.2214-c Google Scholar
  6. 6.
    Nicolau S, Soler L, Mutter D, Marescaux J (2011) Augmented reality in laparoscopic surgical oncology. Surg Oncol 20:189–201. doi: 10.1016/j.suronc.2011.07.002 CrossRefPubMedGoogle Scholar
  7. 7.
    Mårvik R, Langø T, Tangen GA, Andersen JO, Kaspersen JH, Ystgaard B, Sjølie E, Fougner R, Fjøsne HE, Nagelhus Hernes TA (2004) Laparoscopic navigation pointer for three-dimensional image-guided surgery. Surg Endosc 18:1242–1248. doi: 10.1007/s00464-003-9190-x CrossRefPubMedGoogle Scholar
  8. 8.
    Teber D, Guven S, Simpfendörfer T, Baumhauer M, Güven EO, Yencilek F, Gözen AS, Rassweiler J (2009) Augmented reality: a new tool to improve surgical accuracy during laparoscopic partial nephrectomy? Preliminary in vitro and in vivo results. Eur Urol 56:332–338. doi: 10.1016/j.eururo.2009.05.017 CrossRefPubMedGoogle Scholar
  9. 9.
    Ieiri S, Uemura M, Konishi K, Souzaki R, Nagao Y, Tsutsumi N, Akahoshi T, Ohuchida K, Ohdaira T, Tomikawa M, Tanoue K, Hashizume M, Taguchi T (2012) Augmented reality navigation system for laparoscopic splenectomy in children based on preoperative CT image using optical tracking device. Pediatr Surg Int 28:341–346. doi: 10.1007/s00383-011-3034-x CrossRefPubMedGoogle Scholar
  10. 10.
    Tsutsumi N, Tomikawa M, Uemura M, Akahoshi T, Nagao Y, Konishi K, Ieiri S, Hong J, Maehara Y, Hashizume M (2013) Image-guided laparoscopic surgery in an open MRI operating theater. Surg Endosc 27:2178–2184. doi: 10.1007/s00464-012-2737-y CrossRefPubMedGoogle Scholar
  11. 11.
    Takiguchi S, Fujiwara Y, Yamasaki M, Miyata H, Nakajima K, Nishida T, Sekimoto M, Hori M, Nakamura H, Mori M, Doki Y (2014) Laparoscopic intraoperative navigation surgery for gastric cancer using real-time rendered 3D CT images. Surg Today 45:618–624. doi: 10.1007/s00595-014-0983-4 CrossRefPubMedGoogle Scholar
  12. 12.
    Feuerstein M, Mussack T, Heining SM, Navab N (2008) Intraoperative laparoscope augmentation for port placement and resection planning in minimally invasive liver resection. IEEE Trans Med Imaging 27:355–369. doi: 10.1109/TMI.2007.907327 CrossRefPubMedGoogle Scholar
  13. 13.
    Konishi K, Nakamoto M, Kakeji Y, Tanoue K, Kawanaka H, Yamaguchi S, Ieiri S, Sato Y, Maehara Y, Tamura S, Hashizume M (2007) A real-time navigation system for laparoscopic surgery based on three-dimensional ultrasound using magneto-optic hybrid tracking configuration. Int J Comput Assist Radiol Surg 2:1–10. doi: 10.1007/s11548-007-0078-4 CrossRefGoogle Scholar
  14. 14.
    Thompson S, Totz J, Song Y, Johnsen S, Stoyanov D, Ourselin S, Gurusamy K, Schneider C, Davidson B, Hawkes D, Clarkson MJ (2015) Accuracy validation of an image guided laparoscopy system for liver resection. In: Yaniv ZR, Webster RJ (eds) Medical imaging 2015: image-guided procedures, robotic interventions, and modeling. Proceedings of the SPIE, vol 9514, 941509. doi: 10.1117/12.2080974
  15. 15.
    Hayashi Y, Misawa K, Oda M, Hawkes DJ, Mori K (2015) Clinical application of a surgical navigation system based on virtual laparoscopy in laparoscopic gastrectomy for gastric cancer. Int J Comput Assist Radiol Surg. doi: 10.1007/s11548-015-1293-z
  16. 16.
    Hayashi Y, Misawa K, Hawkes DJ, Mori K (2015) Progressive internal landmark registration for image guided vessel clamping in laparoscopic gastrectomy. Int J Comput Assist Radiol Surg 10(Suppl. 1):S60–S61Google Scholar
  17. 17.
    Fujiwara M, Kodera Y, Misawa K, Kinoshita M, Kinoshita T, Miura S, Ohashi N, Nakayama G, Koike M, Nakao A (2008) Longterm outcomes of early-stage gastric carcinoma patients treated with laparoscopy-assisted surgery. J Am Coll Surg 206:138–143. doi: 10.1016/j.jamcollsurg.2007.07.013 CrossRefPubMedGoogle Scholar
  18. 18.
    Fitzpatrick JM, Hill DLG, Maurer CR Jr (2000) Image registration. In: Sonka M, Fitzpatrick JM (eds) Handbook of medical imaging, vol 2. Medical image processing and analysis. SPIE, Bellingham, pp 447–513CrossRefGoogle Scholar
  19. 19.
    Mori K, Higuchi Y, Suenaga Y, Toriwaki J, Hasegawa J, Katada K (2000) A method of interactive specification of interested regions via a volume rendered image with application to virtualized endoscope system. In: Chen C, Clough A (eds) Physiology and function from multidimensional images. Proceedings of the SPIE, vol 3978, pp 134–145Google Scholar
  20. 20.
    Fitzpatrick JM, West JB, Maurer CR Jr (1998) Predicting error in rigid-body point-based registration. IEEE Trans Med Imaging 17:694–702. doi: 10.1109/42.736021 CrossRefPubMedGoogle Scholar

Copyright information

© CARS 2016

Authors and Affiliations

  • Yuichiro Hayashi
    • 1
    Email author
  • Kazunari Misawa
    • 2
  • David J. Hawkes
    • 3
    • 4
  • Kensaku Mori
    • 1
  1. 1.Information & CommunicationsNagoya UniversityNagoyaJapan
  2. 2.Department of Gastroenterological SurgeryAichi Cancer Center HospitalNagoyaJapan
  3. 3.Information Technology CenterNagoya UniversityNagoyaJapan
  4. 4.Centre for Medical Image ComputingUniversity College LondonLondonUK

Personalised recommendations