Advertisement

Vision-based real-time position control of a semi-automated system for robot-assisted joint fracture surgery

  • Giulio Dagnino
  • Ioannis Georgilas
  • Payam Tarassoli
  • Roger Atkins
  • Sanja Dogramadzi
Original Article

Abstract

Purpose

Joint fracture surgery quality can be improved by robotic system with high-accuracy and high-repeatability fracture fragment manipulation. A new real-time vision-based system for fragment manipulation during robot-assisted fracture surgery was developed and tested.

Methods

The control strategy was accomplished by merging fast open-loop control with vision-based control. This two-phase process is designed to eliminate the open-loop positioning errors by closing the control loop using visual feedback provided by an optical tracking system. Evaluation of the control system accuracy was performed using robot positioning trials, and fracture reduction accuracy was tested in trials on ex vivo porcine model.

Results

The system resulted in high fracture reduction reliability with a reduction accuracy of 0.09 mm (translations) and of \(0.15^{\circ }\) (rotations), maximum observed errors in the order of 0.12 mm (translations) and of \(0.18^{\circ }\) (rotations), and a reduction repeatability of 0.02 mm and \(0.03^{\circ }\).

Conclusions

The proposed vision-based system was shown to be effective and suitable for real joint fracture surgical procedures, contributing a potential improvement of their quality.

Keywords

Medical robotics Fracture surgery Robot-assisted surgery Vision-based control Real-time control 

Notes

Acknowledgments

This is a summary of independent research funded by the National Institute for Health Research (NIHR)’s Invention for Innovation (i4i) Programme. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, or the Department of Health.

Compliance with ethical standards

Conflict of interest

Giulio Dagnino, Ioannis Georgilas, Payam Tarassoli, Roger Atkins, and Sanja Dogramadzi declare that they have no conflict of interest.

Ethical standard

An approval by an ethics committee was not applicable.

Informed consent

Statement of informed consent was not applicable since the manuscript does not contain any patient data.

References

  1. 1.
    Finkelstein EA, Corso PS, Miller TR (2006) The incidence and economic burden of injuries in the United States. Oxford University Press, New YorkCrossRefGoogle Scholar
  2. 2.
    Hernlund E, Svedbom A, Ivergård M, Compston J, Cooper C, Stenmark J, McCloskey EV, Jönsson B, Kanis JA (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8:136. doi: 10.1007/s11657-013-0136-1
  3. 3.
    Kulkarni GS (2008) Textbook of orthopaedics and trauma. Jaypee Brothers, New DelhiCrossRefGoogle Scholar
  4. 4.
    Rammelt S, Amlang M, Barthel S, Gavlik J-M, Zwipp H (2010) Percutaneous treatment of less severe intraarticular calcaneal fractures. Clin Orthop 468:983–990. doi: 10.1007/s11999-009-0964-x PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Malizos KN, Bargiotas K, Papatheodorou L, Dimitroulias A, Karachalios T (2006) The Below-the-Ankle circular frame: a new technique for the treatment of displaced calcaneal fractures. J Foot Ankle Surg 45:295–299CrossRefPubMedGoogle Scholar
  6. 6.
    Gebhard F, Kregor P, Oliver K (2015) Distal femur fracture—reduction and fixation. AO Foundation (online). https://www2.aofoundation.org/
  7. 7.
    Gaston P, Will EM, Keating JF (2005) Recovery of knee function following fracture of the tibial plateau. J Bone Joint Surg Br 87:1233–6CrossRefPubMedGoogle Scholar
  8. 8.
    Haidegger T (2010) The advancement of robotic surgery-successes, failures, challenges. Orv Hetil 151:1690–1696. doi: 10.1556/OH.2010.28964 CrossRefPubMedGoogle Scholar
  9. 9.
    Berlinger NT (2006) Robotic surgery–squeezing into tight places. N Engl J Med 354:2009–2101CrossRefGoogle Scholar
  10. 10.
    Kanawade V, Dorr LD, Banks SA, Zhang Z, Wan Z (2014) Precision of robotic guided instrumentation for acetabular component positioning. J Arthroplasty. doi: 10.1016/j.arth.2014.10.021
  11. 11.
    Westphal R, Winkelbach S, Wahl F, Gösling T, Oszwald M, Hüfner T, Krettek C (2009) Robot-assisted long bone fracture reduction. Int J Robot Res 28:1259–1278CrossRefGoogle Scholar
  12. 12.
    Warisawa S, Ishizuka T, Mitsuishi M, Sugano N, Yonenobu K, Nakazawa T (2004) Development of a femur fracture reduction robot. IEEE International Conference Robot Autom. doi: 10.1109/ROBOT.2004.1308896
  13. 13.
    Wang J, Han W, Lin H (2013) Femoral fracture reduction with a parallel manipulator robot on a traction table. Int J Med Robotics Comput Assist Surg. doi: 10.1002/rcs.1550
  14. 14.
    Tang P, Hu L, Du H, Gong M, Zhang L (2012) Novel 3D hexapod computer-assisted orthopaedic surgery system for closed diaphyseal fracture reduction. Int J Med Robot 8:17–24. doi: 10.1002/rcs.417 CrossRefPubMedGoogle Scholar
  15. 15.
    Taylor JC (2008) Perioperative planning for two- and three-plane deformities. Foot Ankle Clin 13:69–121, vi. doi: 10.1016/j.fcl.2007.11.003
  16. 16.
    Raabe D, Dogramadzi S, Atkins R (2012) Semi-automatic percutaneous reduction of intra-articular joint fractures—an initial analysis. IEEE Int Conf Robot Autom. doi: 10.1109/ICRA.2012.6225076
  17. 17.
    Dagnino G, Georgilas I, Tarassoli P, Atkins R, Dogramadzi S (2015) Design and real-time control of a robotic system for fracture manipulation. In: Annual Conference of the IEEE Engineering in Medicine and Biology Society-EMBC 2015. MilanGoogle Scholar
  18. 18.
    Georgilas I, Dagnino G, Tarassoli P, Atkins R, Dogramadzi S (2015) Robot-assisted system for joint fracture surgery. In: International Society for Computer-Assisted Orthopaedic Surgery Conference-CAOS 2015. VancouverGoogle Scholar
  19. 19.
    Knoll A, Staub C, Osa T, Bauernschmitt R (2010) Autonomous high precision positioning of surgical instruments in robot-assisted minimally invasive surgery under visual guidance. 6th Int Conf Auton Auton Syst. doi: 10.1109/ICAS.2010.18
  20. 20.
    Krupa A, Doignon C, de Mathelin MF, Morel G, Leroy J, Soler L, Marescaux J (2003) Autonomous 3-D positioning of surgical instruments in robotized laparoscopic surgery using visual servoing. In: IEEE Trans Robot Autom, pp 842–853Google Scholar
  21. 21.
    Krettek C, Helfet D (2009) Fracture of the distal femur. In: Skeletal Trauma: BasicScience, Management, and Reconstruction, 4th edn. Elesvier, PhiladelphiaGoogle Scholar
  22. 22.
    Marsh JL (2015) Tibial plateau fractures. In: Rockwood Greens fractures in adults, 8th edn. Wolters Kluwer, Philadelphia, pp 2303–2367Google Scholar
  23. 23.
    Collinge CA, Wiss DA (2015) Distal femur fractures. In: Rockwood Greens fractures in adults, 8th edn. Wolters Kluwer, Philadelphia, pp 2229–2268Google Scholar
  24. 24.
    Dagnino G, Georgilas I, Tarassoli P, Atkins R, Dogramadzi S (2015) Force–Torque Measurement System for fracture surgery. In: International Society for Computer-Assisted Orthopaedic Surgery Conference-CAOS 2015. VancouverGoogle Scholar
  25. 25.
    Georgilas I, Dagnino G, Tarassoli P, Atkins R, Dogramadzi S (2015) Preliminary analysis of Force–Torque measurements for robot-assisted fracture surgery. In: Annual Conference of the IEEE Engineering in Medicine and Biology Society-EMBC 2015. MilanGoogle Scholar
  26. 26.
    Merlet JP (2006) Parallel robots. Springer, DordrechtGoogle Scholar
  27. 27.
    Faschingbauer M, Heuer HJD, Seide K, Wendlandt R, Münch M, Jürgens C, Kirchner R (2014) Accuracy of a hexapod parallel robot kinematics based external fixator. Int J Med Robot Comput Assist Surg MRCAS. doi: 10.1002/rcs.1620
  28. 28.
    Mruthyunjaya TSDB (1998) The Stewart platform manipulator: a review. Mech Mach Theory 35:15–40Google Scholar
  29. 29.
    Graham AE, Xie SQ, Xu WL, Mukherjee S (2008) Robotic long bone fracture reduction. In: Medical Robotics. I-Tech Education and Publishing. doi: 10.5772/54929
  30. 30.
    Taghirad HD (2013) Parallel Robots: Mechanics and Control. CRC Press, Boca RatonGoogle Scholar
  31. 31.
    Grabowski ASR (2012) Combined measurements—a way to improve the measurement accuracy of an additive quantity. Measurement 45:1165–1169CrossRefGoogle Scholar
  32. 32.
    Dagnino G, Mattos LS, Caldwell DG (2015) A vision-based system for fast and accurate laser scanning in robot-assisted phonomicrosurgery. Int J Comput Assist Radiol Surg 10:217–229. doi: 10.1007/s11548-014-1078-9 CrossRefPubMedGoogle Scholar
  33. 33.
    Hawkins KP (2013) Analytic inverse kinematics for the universal robots UR-5/UR-10 arms. Georgia Institute of Technology, AtlantaGoogle Scholar
  34. 34.
    Conversion between quaternions and Euler angles (online). https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles. Accessed 7 Jan 2015
  35. 35.
    Phillips CL, Nagle T, Chakrabortty A (2015) Digital control system analysis and design, 4th edn. Prentice Hall, Englewood CliffsGoogle Scholar
  36. 36.
    Chung WKCY (2008) PID trajectory tracking control for mechanical systems. Springer, BerlinGoogle Scholar
  37. 37.
    Silva AJ, Ramirez OAD, Vega VP, Oliver JPO (2009) Phantom omni haptic device: kinematic and manipulability. In: Electron. Robot. Automot. Mech. Conf. Cuernavaca, Morelos, México, pp 193–198Google Scholar
  38. 38.
    Ghasemi A, Zahediasl S (2012) Normality tests for statistical analysis: a guide for non-statisticians. Int J Endocrinol Metab 10:486–489. doi: 10.5812/ijem.3505 PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Kirk RE (2006) Statistics: an introduction. Wadsworth Publishing Co Inc, BelmontGoogle Scholar
  40. 40.
    Baron S, Eilers H, Munske B, Toennies JL, Balachandran R, Labadie RF, Ortmaier T, Webster RJ (2010) Percutaneous inner-ear access via an image-guided industrial robot system. Proc Inst Mech Eng Part H 224:633–649Google Scholar
  41. 41.
    Kotlarski J, Baron S, Eilers H, Hofschulte J, Heimann B (2007) Improving the performance of an optical tracking system using data fusion with an inertial measurement unit. Ulsan, Korea, pp 225–230Google Scholar

Copyright information

© CARS 2015

Authors and Affiliations

  • Giulio Dagnino
    • 1
  • Ioannis Georgilas
    • 1
  • Payam Tarassoli
    • 2
  • Roger Atkins
    • 2
  • Sanja Dogramadzi
    • 1
  1. 1.Bristol Robotics LaboratoryUniversity of the West of EnglandBristolUK
  2. 2.Bristol Royal InfirmaryBristolUK

Personalised recommendations