Advertisement

Simulated field maps for susceptibility artefact correction in interventional MRI

  • Martin Kochan
  • Pankaj Daga
  • Ninon Burgos
  • Mark White
  • M. Jorge Cardoso
  • Laura Mancini
  • Gavin P. Winston
  • Andrew W. McEvoy
  • John Thornton
  • Tarek Yousry
  • John S. Duncan
  • Danail Stoyanov
  • Sébastien Ourselin
Original Article

Abstract

Purpose

Intraoperative MRI (iMRI) is a powerful modality for acquiring images of the brain to facilitate precise image-guided neurosurgery. Diffusion-weighted MRI (DW-MRI) provides critical information about location, orientation and structure of nerve fibre tracts, but suffers from the “susceptibility artefact” stemming from magnetic field perturbations due to the step change in magnetic susceptibility at air–tissue boundaries in the head. An existing approach to correcting the artefact is to acquire a field map by means of an additional MRI scan. However, to recover true field maps from the acquired field maps near air–tissue boundaries is challenging, and acquired field maps are unavailable in historical MRI data sets. This paper reports a detailed account of our method to simulate field maps from structural MRI scans that was first presented at IPCAI 2014 and provides a thorough experimental and analysis section to quantitatively validate our technique.

Methods

We perform automatic air–tissue segmentation of intraoperative MRI scans, feed the segmentation into a field map simulation step and apply the acquired and the simulated field maps to correct DW-MRI data sets.

Results

We report results for 12 patient data sets acquired during anterior temporal lobe resection surgery for the surgical management of focal epilepsy. We find a close agreement between acquired and simulated field maps and observe a statistically significant reduction in the susceptibility artefact in DW-MRI data sets corrected using simulated field maps in the vicinity of the resection. The artefact reduction obtained using acquired field maps remains better than that using the simulated field maps in all evaluated regions of the brain.

Conclusions

The proposed simulated field maps facilitate susceptibility artefact reduction near the resection. Accurate air–tissue segmentation is key to achieving accurate simulation. The proposed simulation approach is adaptable to different iMRI and neurosurgical applications.

Keywords

Image-guided neurosurgery Interventional MRI Magnetic field inhomogeneity Tissue segmentation Field map simulation 

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Andersson JL, Skare S, Ashburner J (2003) How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage 20(2):870–888CrossRefPubMedGoogle Scholar
  2. 2.
    Burgos N, Cardoso MJ, Modat M, Pedemonte S, Dickson J, Barnes A, Duncan JS, Atkinson D, Arridge SR, Hutton BF, Ourselin S (2013) Attenuation correction synthesis for hybrid PET-MR scanners. In: Medical image computing and computer-assisted intervention—(MICCAI 2013). Springer, Berlin, pp 147–154Google Scholar
  3. 3.
    Burgos N, Cardoso MJ, Thielemans K, Modat M, Pedemonte S, Dickson J, Barnes A, Ahmed R, Mahoney CJ, Schott JM, Duncan JS, Atkinson D, Arridge SR, Hutton BF, Ourselin S (2014) Attenuation correction synthesis for hybrid PET-MR scanners: application to brain studies. IEEE Trans Med Imaging 33(12):2332–2341Google Scholar
  4. 4.
    Cardoso MJ, Clarkson MJ, Ridgway GR, Modat M, Fox NC, Ourselin S (2009) Improved maximum a posteriori cortical segmentation by iterative relaxation of priors. In: Medical image computing and computer-assisted intervention—(MICCAI 2009). Springer, Berlin, pp 441–449Google Scholar
  5. 5.
    Chen X, Weigel D, Ganslandt O, Buchfelder M, Nimsky C (2009) Prediction of visual field deficits by diffusion tensor imaging in temporal lobe epilepsy surgery. Neuroimage 45(2):286–297CrossRefPubMedGoogle Scholar
  6. 6.
    Clare S, Evans J, Jezzard P (2006) Requirements for room temperature shimming of the human brain. Magn Reson Med 55(1):210–214CrossRefPubMedGoogle Scholar
  7. 7.
    Daga P, Pendse T, Modat M, White M, Mancini L, Winston G, McEvoy AW, Thornton J, Yousry T, Drobnjak I, Duncan JS, Ourselin S (2014) Susceptibility artefact correction using dynamic graph cuts: application to neurosurgery. Med Image Anal 18(7):1132–1142Google Scholar
  8. 8.
    Daga P, Winston G, Modat M, White M, Mancini L, Cardoso MJ, Symms M, Stretton J, McEvoy AW, Thornton J, Micallef C, Yousry T, Hawkes DJ, Duncan JS, Ourselin S (2012) Accurate localization of optic radiation during neurosurgery in an interventional MRI suite. IEEE Trans Med Imaging 31(4):882–891CrossRefPubMedGoogle Scholar
  9. 9.
    Gasser T, Ganslandt O, Sandalcioglu E, Stolke D, Fahlbusch R, Nimsky C (2005) Intraoperative functional MRI: implementation and preliminary experience. Neuroimage 26(3):685–693CrossRefPubMedGoogle Scholar
  10. 10.
    Gruetter R, Boesch C (1992) Fast, noniterative shimming of spatially localized signals. In vivo analysis of the magnetic field along axes. J Magn Reson (1969) 96(2):323–334CrossRefGoogle Scholar
  11. 11.
    Hutton C, Bork A, Josephs O, Deichmann R, Ashburner J, Turner R (2002) Image distortion correction in fMRI: a quantitative evaluation. Neuroimage 16(1):217–240CrossRefPubMedGoogle Scholar
  12. 12.
    Jenkinson M (2003) Fast, automated, n-dimensional phase-unwrapping algorithm. Magn Reson Med 49(1):193–197CrossRefPubMedGoogle Scholar
  13. 13.
    Jenkinson M, Wilson JL, Jezzard P (2004) Perturbation method for magnetic field calculations of nonconductive objects. Magn Reson Med 52(3):471–477CrossRefPubMedGoogle Scholar
  14. 14.
    Jezzard P, Balaban RS (1995) Correction for geometric distortion in echo planar images from B0 field variations. Magn Reson Med 34(1):65–73CrossRefPubMedGoogle Scholar
  15. 15.
    Kim DJ, Park HJ, Kang KW, Shin YW, Kim JJ, Moon WJ, Chung EC, Kim IY, Kwon JS, Kim SI (2006) How does distortion correction correlate with anisotropic indices? A diffusion tensor imaging study. Magn Reson Imaging 24(10):1369–1376CrossRefPubMedGoogle Scholar
  16. 16.
    Kochan M, Daga P, Burgos N, White M, Cardoso MJ, Mancini L, Winston GP, McEvoy AW, Thornton J, Yousry T, Duncan JS, Stoyanov D, Ourselin S (2014) Simulated field maps: toward improved susceptibility artefact correction in interventional MRI. In: Information processing in computer-assisted interventions. Springer, Berlin, pp 226–235Google Scholar
  17. 17.
    Modat M, Ridgway GR, Taylor ZA, Lehmann M, Barnes J, Hawkes DJ, Fox NC, Ourselin S (2010) Fast free-form deformation using graphics processing units. Comput Methods Program Biomed 98(3):278–284CrossRefGoogle Scholar
  18. 18.
    Nilsson D, Starck G, Ljungberg M, Ribbelin S, Jönsson L, Malmgren K, Rydenhag B (2007) Intersubject variability in the anterior extent of the optic radiation assessed by tractography. Epilepsy Res 77(1):11–16CrossRefPubMedGoogle Scholar
  19. 19.
    Papadakis NG, Martin KM, Mustafa MH, Wilkinson ID, Griffiths PD, Huang CLH, Woodruff PW (2002) Study of the effect of CSF suppression on white matter diffusion anisotropy mapping of healthy human brain. Magn Reson Med 48(2):394–398CrossRefPubMedGoogle Scholar
  20. 20.
    Poynton C, Jenkinson M, Wells W III (2009) Atlas-based improved prediction of magnetic field inhomogeneity for distortion correction of EPI data. In: Medical image computing and computer-assisted intervention—(MICCAI 2009). Springer, Berlin, pp 951–959Google Scholar
  21. 21.
    Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazya RK, Saundersa J, Vickersa J, Zhanga Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Supplement 1):S208–S219CrossRefPubMedGoogle Scholar
  22. 22.
    Wiebe S, Blume WT, Girvin JP, Eliasziw M (2001) A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med 345(5):311–318Google Scholar
  23. 23.
    Xu C, Prince JL (1998) Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7(3):359–369CrossRefPubMedGoogle Scholar

Copyright information

© CARS 2015

Authors and Affiliations

  • Martin Kochan
    • 1
  • Pankaj Daga
    • 1
  • Ninon Burgos
    • 1
  • Mark White
    • 2
  • M. Jorge Cardoso
    • 1
    • 3
  • Laura Mancini
    • 2
  • Gavin P. Winston
    • 4
  • Andrew W. McEvoy
    • 2
  • John Thornton
    • 2
  • Tarek Yousry
    • 2
  • John S. Duncan
    • 4
  • Danail Stoyanov
    • 1
  • Sébastien Ourselin
    • 1
    • 3
  1. 1.Centre for Medical Image ComputingUniversity College LondonLondonUK
  2. 2.National Hospital for Neurology and NeurosurgeryUCLH NHS Foundation TrustLondonUK
  3. 3.Dementia Research Centre, Institute of NeurologyUniversity College LondonLondonUK
  4. 4.Department of Clinical and Experimental Epilepsy, Institute of NeurologyUniversity College LondonLondonUK

Personalised recommendations