Toward online quantification of tracheal stenosis from videobronchoscopy

  • Carles SánchezEmail author
  • Jorge Bernal
  • F. Javier Sánchez
  • Marta Diez
  • Antoni Rosell
  • Debora Gil
Original Article



Lack of objective measurement of tracheal obstruction degree has a negative impact on the chosen treatment prone to lead to unnecessary repeated explorations and other scanners. Accurate computation of tracheal stenosis in videobronchoscopy would constitute a breakthrough for this noninvasive technique and a reduction in operation cost for the public health service.


Stenosis calculation is based on the comparison of the region delimited by the lumen in an obstructed frame and the region delimited by the first visible ring in a healthy frame. We propose a parametric strategy for the extraction of lumen and tracheal ring regions based on models of their geometry and appearance that guide a deformable model. To ensure a systematic applicability, we present a statistical framework to choose optimal parametric values and a strategy to choose the frames that minimize the impact of scope optical distortion.


Our method has been tested in 40 cases covering different stenosed tracheas. Experiments report a non- clinically relevant \(9\,\%\) of discrepancy in the calculated stenotic area and a computational time allowing online implementation in the operating room.


Our methodology allows reliable measurements of airway narrowing in the operating room. To fully assess its clinical impact, a prospective clinical trial should be done.


Bronchoscopy Stenosis assessment  Parameter setting ANOVA 


Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Asari KV (2000) A fast and accurate segmentation technique for the extraction of gastrointestinal lumen from endoscopic images. Med Eng Phys 22(2):89–96 Google Scholar
  2. 2.
    Begnaud A, Connett JE, Harwood EM, Jantz MA, Mehta HJ (2014) Measuring central airway obstruction: What do bronchoscopists do? Ann Am Thorac Soc 12(1):85–90Google Scholar
  3. 3.
    Brouns M, Jayaraju ST, Lacor C, De Mey J, Noppen M, Vincken W, Verbanck S (2007) Tracheal stenosis: a flow dynamics study. J Appl Phys 102(3):1178–1184Google Scholar
  4. 4.
    Brown Robert H, Herold Christian J, Hirshman Carol A (1991) In vivo measurements of airway reactivity using high resolution computed tomography. Am Rev Respir Dis 144:208–212CrossRefPubMedGoogle Scholar
  5. 5.
    Carden Kelly A, Boiselle Philip M, Waltz David A, Ernst Armin (2005) Tracheomalacia and tracheobronchomalacia in children and adults an in-depth review. CHEST J 127(3):984–1005CrossRefGoogle Scholar
  6. 6.
    Muller K (1989) Statistical power analysis for the behavioral sciences. Technometrics 31(4):499–500Google Scholar
  7. 7.
    Colt H, Murgu S (2012) Bronchoscopy and central airway disorders. Elsevier, New YorkGoogle Scholar
  8. 8.
    Dörffel WV, Fietze I (1999) A new bronchoscopic method to measure airway size. Eur Respir J 14(4):783–788CrossRefPubMedGoogle Scholar
  9. 9.
    Dunnett CW (1980) A multiple comparison procedure for comparing several treatments with a control. J Am Stat Assoc 50:1096–1121CrossRefGoogle Scholar
  10. 10.
    Forkert Lutz, Watanabe Hiroshi, Sutherland Kenneth, Vincent Sandra, Fisher John T (1996) Quantitative videobronchoscopy: a new technique to assess airway caliber. Am J Respir Crit Care Med 154(6):1794CrossRefPubMedGoogle Scholar
  11. 11.
    Freeman W, Adelson EH (1991) The design and use of steerable filters. IEEE Trans Pattern Anal Mach Intell 13(9):891–906CrossRefGoogle Scholar
  12. 12.
    Gallo G, Torrisi A (2012) Lumen detection in endoscopic images: a boosting classification approach. Int J Adv Intell Syst 5(1–2):127–134Google Scholar
  13. 13.
    Garcia-Barnes J, Gil D, Badiella L, Hernandez-Sabate A, Carreras F, Pujades S, Martí E (2010) A normalized framework for the design of feature spaces assessing the left ventricular function. IEEE Trans Med Imaging 29(3):733–745CrossRefPubMedGoogle Scholar
  14. 14.
    Gil D, Radeva P (2005) Extending anisotropic operators to recover smooth shapes. Comput Vis Image Underst 99:110–125CrossRefGoogle Scholar
  15. 15.
    Hayashi A, Takanashi S (2012) New method for quantitative assessment of airway calibre using a stereovision fibreoptic bronchoscope. Br J Anaesth 108(3):512–516CrossRefPubMedGoogle Scholar
  16. 16.
    Heimann T, van Ginneken B (2009) Comparison and evaluation of methods for liver segmentation from ct datasets. IEEE Trans Med Imaging 28(8):1251–1265CrossRefPubMedGoogle Scholar
  17. 17.
    Hein E, Rutter M (2006) New perspectives in pediatric airway reconstruction. Int Anesthesiol Clin 44(1):51CrossRefPubMedGoogle Scholar
  18. 18.
    Helferty James P, Zhang Chao, McLennan Geoffrey, Higgins William E (2001) Videoendoscopic distortion correction and its application to virtual guidance of endoscopy. IEEE Trans Med Imaging 20(7):605–617CrossRefPubMedGoogle Scholar
  19. 19.
    Hernàndez-Sabaté A (2009) Exploring arterial dynamics and structures in intravascular ultra sound sequences. PhD thesis, Universitat Autònoma de BarcelonaGoogle Scholar
  20. 20.
    Jowett Nathan, Weersink Robert A, Zhang Kai, Campisi Paolo, Forte Vito (2008) Airway luminal diameter and shape measurement by means of an intraluminal fiberoptic probe: a bench model. Arch Otolaryngol Head Neck Surg 134(6):637CrossRefPubMedGoogle Scholar
  21. 21.
    Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331CrossRefGoogle Scholar
  22. 22.
    Lee Karen S, Sun Maryellen RM, Ernst Armin, Feller-Kopman David, Majid Adnan, Boiselle Phillip M (2007) Comparison of dynamic expiratory ct with bronchoscopy for diagnosing airway malacia: a pilot evaluation. Chest 131:758–764CrossRefPubMedGoogle Scholar
  23. 23.
    Masters IB, Eastburn MM (2005) A new method for objective identification and measurement of airway lumenin paediatric flexible videobronchoscopy. Thorax 60(8):652CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    McFawn PK, Forkert L, Fisher JT (2001) A new method to perform quantitative measurement of bronchoscopic images. Eur Respir J 18(5):817–826CrossRefPubMedGoogle Scholar
  25. 25.
    Miller Jr RG (1997) Beyond ANOVA: basics of applied statistics. CRC Press, LondonGoogle Scholar
  26. 26.
    Mori Kensaku, Deguchi Daisuke, Sugiyama Jun, Suenaga Yasuhito, Toriwaki Jun-ichiro, Maurer CR, Takabatake Hirotsugu, Natori Hiroshi (2002) Tracking of a bronchoscope using epipolar geometry analysis and intensity-based image registration of real and virtual endoscopic images. Med Image Anal 6(3):321–336CrossRefPubMedGoogle Scholar
  27. 27.
    Murgu S, Colt H (2013) Subjective assessment using still bronchoscopic images misclassifies airway narrowing in laryngotracheal stenosis. Interact Cardiovasc Thorac Surg 16(5):655–660CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Murgu S, Colt HG (2009) Morphometric bronchoscopy in adults with central airway obstruction: case illustrations and review of the literature. Laryngoscope 119(7):1318–1324CrossRefPubMedGoogle Scholar
  29. 29.
    Myer C 3rd, O’connor D, Cotton R (1994) Proposed grading system for subglottic stenosis based on endotracheal tubesizes. Ann Otol Rhinol Laryngol 103(4 Pt 1):319CrossRefPubMedGoogle Scholar
  30. 30.
    Norwood S, Vallina VL, Short K (2000) Incidence of tracheal stenosis and other late complications after percutaneous tracheostomy. Ann Surg 232(2):233CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Nouraei SAR, McPartlin DW, Nouraei SM, Patel A, Ferguson C, Howard DJ, Sandhu GS (2006) Objective sizing of upper airway stenosis: a quantitative endoscopic approach. Laryngoscope 116:12–17CrossRefPubMedGoogle Scholar
  32. 32.
    Odry BL, Kiraly AP, Slabaugh GG, Novak CL, Naidich DP, Lerallut JF (2008) Active contour approach for accurate quantitative airway analysis. In: Medical Imaging. International Society for Optics and Photonics, pp 691613–691613Google Scholar
  33. 33.
    Phee SJ, Ng WS, Chen IM, Seow-Choen F, Davies BL (1998) Automation of colonoscopy. ii. visual control aspects. IEEE Eng Med Biol Mag 17(3):81–88CrossRefPubMedGoogle Scholar
  34. 34.
    Polverosi R, Vigo M, Baron S, Rossi G (2001) Evaluation of tracheobronchial lesions with spiral ct: comparison between virtual endoscopy and broncoscopy. Radiol Med 102:313–319PubMedGoogle Scholar
  35. 35.
    Rozycki HJ, Van Houten ML, Elliott GR (1996) Quantitative assessment of intrathoracic airway collapse in infants and children with tracheobronchomalacia. Pediatr Pulmonol 21(4):241–245CrossRefPubMedGoogle Scholar
  36. 36.
    Tubiana M, Nagataki S, Feinendegen LE (2008) Computed tomography and radiation exposure. N Engl J Med 358(8):850Google Scholar
  37. 37.
    Sánchez C, Bernal J, Gil D, Sánchez FJ (2014) On-line lumen centre detection in gastrointestinal and respiratory endoscopy. In: Clinical image-based procedures. Translational Research in Medical Imaging, vol 8361. Springer, Switzerland, pp 31–38Google Scholar
  38. 38.
    Sánchez C, Gil D, Rosell A, Andaluz A, Sánchez FJ (2013) Segmentation of tracheal rings in videobronchoscopy combining geometry and appearance. VISAPP 1:153–161Google Scholar
  39. 39.
    Sucar LE, Gillies DF (1990) Knowledge-based assistant for colonscopy. In: Proceedings of the 3rd international conference on industrial and engineering applications of artificial intelligence and expert systems, vol 2. ACM, pp 665–672Google Scholar
  40. 40.
    Thrun S, Leonard JJ (2008) Simultaneous localization and mapping. Springer, New York, pp 871–889Google Scholar
  41. 41.
    Vergnon JM, Costes F, Bayon MC, Emonot A (1995) Efficacy of tracheal and bronchial stent placement on respiratory functional tests. Chest 107(3):741–746CrossRefPubMedGoogle Scholar
  42. 42.
    Wieand S, Gail MH, James BR, James KL (1989) A family of nonparametric statistics for comparing diagnostic markers with paired or unpaired data. Biometrika 76(3):585–592CrossRefGoogle Scholar
  43. 43.
    Zabulis X, Argyros AA, Tsakiris DP (2008) Lumen detection for capsule endoscopy. In: IROS. IEEE/RSJ International Conference on IEEE, pp 3921–3926Google Scholar

Copyright information

© CARS 2015

Authors and Affiliations

  • Carles Sánchez
    • 1
    Email author
  • Jorge Bernal
    • 1
  • F. Javier Sánchez
    • 1
  • Marta Diez
    • 2
  • Antoni Rosell
    • 2
  • Debora Gil
    • 1
  1. 1.Computer Vision Center, Computer Science DepartmentUniversitat Autonoma de BarcelonaBarcelonaSpain
  2. 2.Pneumology Unit, Hospital University BellvitgeIDIBELL, CIBERESBarcelonaSpain

Personalised recommendations