Open-source image registration for MRI–TRUS fusion-guided prostate interventions

  • Andriy Fedorov
  • Siavash Khallaghi
  • C. Antonio Sánchez
  • Andras Lasso
  • Sidney Fels
  • Kemal Tuncali
  • Emily Neubauer Sugar
  • Tina Kapur
  • Chenxi Zhang
  • William Wells
  • Paul L. Nguyen
  • Purang Abolmaesumi
  • Clare Tempany
Original Article

Abstract

Purpose

We propose two software tools for non-rigid registration of MRI and transrectal ultrasound (TRUS) images of the prostate. Our ultimate goal is to develop an open-source solution to support MRI–TRUS fusion image guidance of prostate interventions, such as targeted biopsy for prostate cancer detection and focal therapy. It is widely hypothesized that image registration is an essential component in such systems.

Methods

The two non-rigid registration methods are: (1) a deformable registration of the prostate segmentation distance maps with B-spline regularization and (2) a finite element-based deformable registration of the segmentation surfaces in the presence of partial data. We evaluate the methods retrospectively using clinical patient image data collected during standard clinical procedures. Computation time and Target Registration Error (TRE) calculated at the expert-identified anatomical landmarks were used as quantitative measures for the evaluation.

Results

The presented image registration tools were capable of completing deformable registration computation within 5 min. Average TRE was approximately 3 mm for both methods, which is comparable with the slice thickness in our MRI data. Both tools are available under nonrestrictive open-source license.

Conclusions

We release open-source tools that may be used for registration during MRI–TRUS-guided prostate interventions. Our tools implement novel registration approaches and produce acceptable registration results. We believe these tools will lower the barriers in development and deployment of interventional research solutions and facilitate comparison with similar tools.

Keywords

Prostate cancer Targeted biopsy  Image-guided interventions Image registration  Magnetic resonance imaging Ultrasound 

Notes

Acknowledgments

A.F., K.T., T.K., P.N. and C.T. were supported in part by the US National Institutes of Health, through the Grants R01 CA111288, P41 RR019703 and U24 CA180918. S.K., C.A.S., S.F. and P.A. were supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), Canadian Institutes of Health (CIHR), the Networked Centres of Excellence on Graphics, Animation and New Media (GRAND) and Autodesk Research Inc. C.A.S. was supported by NSERC (PGSD) and UBC (FYF6456). C.Z. was supported by China Scholarship Council (201206105023).

References

  1. 1.
    Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63(1):11–30CrossRefPubMedGoogle Scholar
  2. 2.
    Hegde VJ, Mulkern RV, Panych LP, Fennessy FM, Fedorov A, Maier SE, Tempany CM (2013) Multiparametric MRI of prostate cancer: An update on state-of-the-art techniques and their performance in detecting and localizing prostate cancer. J Magn Reson Imaging 37(5):1035–1054CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Kaplan I, Oldenburg NE, Meskell M, Blake P, Church P, Holupka EJ (2002) Real time MRI-ultrasound image guided stereotactic prostate biopsy. Magn Reson Imaging 20(3):295–299CrossRefPubMedGoogle Scholar
  4. 4.
    Logan JK et al (2014) Current status of magnetic resonance imaging (MRI) and ultrasonography fusion software platforms for guidance of prostate biopsies. BJU Int 114(5):641–652CrossRefPubMedGoogle Scholar
  5. 5.
    Puech P et al (2013) Prostate cancer diagnosis: multiparametric MR-targeted biopsy with cognitive and Transrectal US-MR fusion guidance versus systematic biopsy-prospective multicenter study. Radiology 268(2):461–469CrossRefPubMedGoogle Scholar
  6. 6.
    Delongchamps NB et al (2013) Prebiopsy magnetic resonance imaging and prostate cancer detection: comparison of random and targeted biopsies. J Urol 189(2):493–499CrossRefPubMedGoogle Scholar
  7. 7.
    Hu Y, Ahmed HA, Taylor Z, Allen C, Emberton M, Hawkes D, Barratt D (2012) MR to ultrasound registration for image-guided prostate interventions. Med Image Anal 16(3): 687–703. ISSN: 1361–8415Google Scholar
  8. 8.
    Moradi M et al (2012) Two solutions for registration of ultrasound to MRI for image-guided prostate interventions. In: Engineering in Medicine and Biology Society (EMBC), 2012 annual international conference of the IEEE, pp 1129–1132Google Scholar
  9. 9.
    Sun Y, Yuan J, Rajchl M, Qiu W, Romagnoli C, Fenster A (2013) Efficient convex optimization approach to 3D non-rigid MR–TRUS registration. In: Mori K, Sakuma I, Sato Y, Barillot C, Navab N (eds) MICCAI, vol. 8149. Springer, Berlin, pp 195–202. ISBN: 978-3-642-40810-6Google Scholar
  10. 10.
    Natarajan S et al (2011) Clinical application of a 3D ultrasound-guided prostate biopsy system. Urol Oncol 29(3):334–342CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Smith WL et al (2007) Prostate volume contouring: a 3D analysis of segmentation using 3DTRUS, CT, and MR. Int J Radiat Oncol Biol Phys 67(4):1238–1247. ISSN: 0360–3016Google Scholar
  12. 12.
    Myronenko A, Song X (2010) Point set registration: coherent point drift. IEEE Trans Pattern Anal Mach Intell 32(12):2262–2275CrossRefPubMedGoogle Scholar
  13. 13.
    Lasso A, Heffter T, Rankin A, Pinter C, Ungi T, Fichtinger G (2014) PLUS: open-source toolkit for ultrasound-guided intervention systems. IEEE Trans Biomed Eng 61(10):2527–2537CrossRefPubMedGoogle Scholar
  14. 14.
    Fedorov A et al (2012) 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30(9):1323–1341CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Johnson HJ, Harris G, Williams K (2007) BRAINSFit: mutual information registrations of whole-brain 3D images, using the insight toolkit. Insight JGoogle Scholar
  16. 16.
    Fedorov A et al (2012) Image registration for targeted MRI-guided transperineal prostate biopsy. J Magn Reson Imaging 36(4):987–992CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Penzkofer T et al (2014) Transperineal In-Bore 3-T MR imaging-guided prostate biopsy: a prospective clinical observational study. Radiology 274:170–180 Google Scholar
  18. 18.
    Maurer CR, Raghavan V (2003) A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions. IEEE Trans Pattern Anal Mach Intell 25(2):265–270Google Scholar
  19. 19.
    Gelas A, Gouaillard A, Megason S (2008) Surface meshes incremental decimation framework. Insight JGoogle Scholar
  20. 20.
    Si H (2008) Adaptive tetrahedral mesh generation by constrained delaunay refinement. Int J Numer Methods Eng 75(7):856–880CrossRefGoogle Scholar
  21. 21.
    Krouskop TA, Wheeler TM, Kallel F, Garra BS, Hall T (1998) Elastic moduli of breast and prostate tissues under compression. Ultrason Imaging 20(4):260–274CrossRefPubMedGoogle Scholar
  22. 22.
    Shah A, Zettinig O, Maurer T, Precup C, Schulte zu Berge C, Frisch B, Navab N (2014) An open source multimodal image-guided prostate biopsy framework. In: 3rd workshop on clinical image-based procedures: translational research in medical imaging (CLIP), 17th MIC-CAIGoogle Scholar
  23. 23.
    Murciano-Goroff YR et al (2014) Variability in MRI vs. ultrasound measures of prostate volume and its impact on treatment recommendations for favorable-risk prostate cancer patients: a case series. Radiat Oncol 9:200CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Heijmink SWTPJ, Scheenen TWJ, van Lin ENJT, Visser AG, Kiemeney LALM, Witjes JA, Barentsz JO (2009) Changes in prostate shape and volume and their implications for radiotherapy after introduction of endorectal balloon as determined by MRI at 3T. Int J Radiat Oncol Biol Phys 73(5):1446–1453CrossRefPubMedGoogle Scholar
  25. 25.
    Tokuda J et al (2009) OpenIGTLink: an open network protocol for imageguided therapy environment. Int J Med Robot 5(4):423–434CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© CARS 2015

Authors and Affiliations

  • Andriy Fedorov
    • 1
  • Siavash Khallaghi
    • 2
  • C. Antonio Sánchez
    • 2
  • Andras Lasso
    • 3
  • Sidney Fels
    • 2
  • Kemal Tuncali
    • 1
  • Emily Neubauer Sugar
    • 1
  • Tina Kapur
    • 1
  • Chenxi Zhang
    • 1
  • William Wells
    • 1
  • Paul L. Nguyen
    • 1
  • Purang Abolmaesumi
    • 2
  • Clare Tempany
    • 1
  1. 1.Brigham and Women’s HospitalBostonUSA
  2. 2.University of British ColumbiaVancouverCanada
  3. 3.Queen’s UniversityKingstonCanada

Personalised recommendations