Advertisement

A statistical shape model of the human second cervical vertebra

  • Marine Clogenson
  • John M. Duff
  • Marcel Luethi
  • Marc Levivier
  • Reto Meuli
  • Charles Baur
  • Simon Henein
Original Article

Abstract

Purpose

Statistical shape and appearance models play an important role in reducing the segmentation processing time of a vertebra and in improving results for 3D model development. Here, we describe the different steps in generating a statistical shape model (SSM) of the second cervical vertebra (C2) and provide the shape model for general use by the scientific community. The main difficulties in its construction are the morphological complexity of the C2 and its variability in the population.

Methods

The input dataset is composed of manually segmented anonymized patient computerized tomography (CT) scans. The alignment of the different datasets is done with the procrustes alignment on surface models, and then, the registration is cast as a model-fitting problem using a Gaussian process. A principal component analysis (PCA)-based model is generated which includes the variability of the C2.

Results

The SSM was generated using 92 CT scans. The resulting SSM was evaluated for specificity, compactness and generalization ability. The SSM of the C2 is freely available to the scientific community in Slicer (an open source software for image analysis and scientific visualization) with a module created to visualize the SSM using Statismo, a framework for statistical shape modeling.

Conclusion

The SSM of the vertebra allows the shape variability of the C2 to be represented. Moreover, the SSM will enable semi-automatic segmentation and 3D model generation of the vertebra, which would greatly benefit surgery planning.

Keywords

Statistical shape model Second cervical vertebra Non-rigid image registration Segmentation Principal component analysis 

Notes

Acknowledgments

The Swiss National Science Foundation (SNSF) supported this study. The authors thank KB Medical for their help and support with the project.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ishikawa Y, Kanemura T, Yoshida G, Ito Z, Muramoto A, Ohno S (2010) Clinical accuracy of three-dimensional fluoroscopy-based computer-assisted cervical pedicle screw placement: a retrospective comparative study of conventional versus computer-assisted cervical pedicle screw placement. J Neurosurg Spine 13(5):606–611PubMedCrossRefGoogle Scholar
  2. 2.
    Ito H, Neo M, Yoshida M, Fujibayashi S, Yoshitomi H, Nakamura T (2007) Efficacy of computer-assisted pedicle screw insertion for cervical instability in RA patients. Rheumatol Int 27(6):567–574PubMedCrossRefGoogle Scholar
  3. 3.
    Kamimura M, Ebara S, Itoh H, Tateiwa Y, Kinoshita T, Takaoka K (2000) Cervical pedicle screw insertion: assessment of safety and accuracy with computer-assisted image guidance. J Spinal Disord 13(3):218–224PubMedCrossRefGoogle Scholar
  4. 4.
    Ludwig SC, Kramer DL, Balderston RA, Vaccaro AR, Foley KF, Albert TJ (2000) Placement of pedicle screws in the human cadaveric cervical spine: comparative accuracy of three techniques. Spine 25(13):1655–1667PubMedCrossRefGoogle Scholar
  5. 5.
    Rampersaud YR, Pik JHT, Salonen D, Farooq S (2005) Clinical accuracy of fluoroscopic computer-assisted pedicle screw fixation: a CT analysis. Spine 30(7):E183–190PubMedCrossRefGoogle Scholar
  6. 6.
    Richter M, Cakir B, Schmidt R (2005) Cervical pedicle screws: conventional versus computer-assisted placement of cannulated screws. Spine 30(20):2280–2287PubMedCrossRefGoogle Scholar
  7. 7.
    Richter M, Mattes T, Cakir B (2004) Computer-assisted posterior instrumentation of the cervical and cervico-thoracic spine. Eur Spine J 13(1):50–59PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Weidner A, Wähler M, Chiu ST, Ullrich CG (2000) Modification of c1–c2 transarticular screw fixation by image-guided surgery. Spine 25(20):2668–2673, discussion 2674Google Scholar
  9. 9.
    Panjabi MM, Shin EK, Chen NC, Wang JL (2000) Internal morphology of human cervical pedicles. Spine 25(10):1197–1205PubMedCrossRefGoogle Scholar
  10. 10.
    Karaikovic EE, Daubs MD, Madsen RW, Gaines JRW (1997) Morphologic characteristics of human cervical pedicles. Spine 22(5):493–500PubMedCrossRefGoogle Scholar
  11. 11.
    Karaikovic EE, Yingsakmongkol W, Gaines JRW (2001) Accuracy of cervical pedicle screw placement using the funnel technique. Spine 26(22):2456–2462PubMedCrossRefGoogle Scholar
  12. 12.
    Neo M, Fujibayashi S, Miyata M, Takemoto M, Nakamura T (2008) Vertebral artery injury during cervical spine surgery: a survey of more than 5600 operations. Spine 33(7):779–785PubMedCrossRefGoogle Scholar
  13. 13.
    Neo M, Sakamoto T, Fujibayashi S, Nakamura T (2005) The clinical risk of vertebral artery injury from cervical pedicle screws inserted in degenerative vertebrae. Spine 30(24):2800–2805PubMedCrossRefGoogle Scholar
  14. 14.
    Roy-Camille R, Saillant G, Laville C, Benazet JP (1992) Treatment of lower cervical spinal injuries—c3 to c7. Spine 17(10 Suppl):S442–446PubMedCrossRefGoogle Scholar
  15. 15.
    Kosmopoulos V, Schizas C (2007) Pedicle screw placement accuracy: a meta-analysis. Spine 32(3):E111–120PubMedCrossRefGoogle Scholar
  16. 16.
    Tian NF, Xu HZ (2009) Image-guided pedicle screw insertion accuracy: a meta-analysis. Int Orthop 33(4):895–903PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Verma R, Krishan S, Haendlmayer K, Mohsen A (2010) Functional outcome of computer-assisted spinal pedicle screw placement: a systematic review and meta-analysis of 23 studies including 5,992 pedicle screws. Eur Spine J 19(3):370–375PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Kostrzewski S, Duff JM, Baur C, Olszewski M (2012) Robotic system for cervical spine surgery. Int J Med Robot 8(2):184–190PubMedCrossRefGoogle Scholar
  19. 19.
    Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R (2012) 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30(9):1323–1341PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    3D slicer. www.slicer.org/
  21. 21.
    Sharma N, Aggarwal LM (2010) Automated medical image segmentation techniques. J Med Phys 35(1):3–14PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Aslan M, Farag A, Arnold B, Xiang P (2011) Segmentation of vertebrae using level sets with expectation maximization algorithm. In: 2011 IEEE international symposium on biomedical imaging: from nano to macro, pp 2010–2013Google Scholar
  23. 23.
    Aslan M, Ali A, Farag A, Rara H, Arnold B, Xiang P (2010) 3d vertebral body segmentation using shape based graph cuts. In: 2010 20th international conference on pattern recognition (ICPR), pp 3951–3954Google Scholar
  24. 24.
    Cootes TF, Taylor CJ, Cooper DH, Graham J (1995) Active shape models—their training and application. Comput Vis Image Underst 61(1):38–59CrossRefGoogle Scholar
  25. 25.
    Sarkalkan N, Weinans H, Zadpoor AA (2014) Statistical shape and appearance models of bones. Bone 60:129–140PubMedCrossRefGoogle Scholar
  26. 26.
    Heimann T, Meinzer HP (2009) Statistical shape models for 3d medical image segmentation: a review. Med Image Anal 13(4):543–563PubMedCrossRefGoogle Scholar
  27. 27.
    Zheng G, Nolte LP, Ferguson SJ (2011) Scaled, patient-specific 3D vertebral model reconstruction based on 2D lateral fluoroscopy. Int J Comput Assist Radiol Surg 6(3):351–366PubMedCrossRefGoogle Scholar
  28. 28.
    Styner M, Oguz I, Xu S, Brechbuhler C, Pantazis D, Levitt JJ, Shenton ME, Gerig G (2006) Framework for the statistical shape analysis of brain structures using SPHARM-PDM. Insight J 1071:242–250PubMedGoogle Scholar
  29. 29.
    Mirzaalian H, Wels M, Heimann T, Kelm B, Suehling M (2013) Fast and robust 3d vertebra segmentation using statistical shape models. In: 2013 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 3379–3382Google Scholar
  30. 30.
    Klinder T, Ostermann J, Ehm M, Franz A, Kneser R, Lorenz C (2009) Automated model-based vertebra detection, identification, and segmentation in CT images. Med Image Anal 13(3):471–482PubMedCrossRefGoogle Scholar
  31. 31.
    Heitz G, Rohlfing T, Maurer CR Jr (2005) Statistical shape model generation using nonrigid deformation of a template mesh, pp 1411–1421Google Scholar
  32. 32.
    Rasoulian A, Rohling R, Abolmaesumi P (2012) Group-wise registration of point sets for statistical shape models. IEEE Trans Med Imaging 31(11):2025–2034Google Scholar
  33. 33.
    Madawi AA, Casey AT, Solanki GA, Tuite G, Veres R, Crockard HA (1997) Radiological and anatomical evaluation of the atlantoaxial transarticular screw fixation technique. J Neurosurg 86(6):961–968PubMedCrossRefGoogle Scholar
  34. 34.
    Lüthi M, Jud C, Vetter T (2011) Using landmarks as a deformation prior for hybrid image registration. In: Proceedings of the 33rd international conference on pattern recognition, Berlin, Heidelberg, DAGM’11, pp 196–205Google Scholar
  35. 35.
    Opfer R (2006) Multiscale kernels. Adv Comput Math 25(4):357–380CrossRefGoogle Scholar
  36. 36.
    Lüthi M, Jud C, Vetter T (2013) A unified approach to shape model fitting and non-rigid registration. In: Machine learning in medical imaging, no. 8184 in lecture notes in computer science, pp 66–73Google Scholar
  37. 37.
    Styner MA, Rajamani KT, Nolte LP, Zsemlye G, Székely G, Taylor CJ, Davies RH (2003) Evaluation of 3d correspondence methods for model building. In: Taylor C, Noble JA (eds) Information processing in medical imaging, no. 2732 in lecture notes in computer science, pp 63–75Google Scholar
  38. 38.
    Kistler M, Bonaretti S, Pfahrer M, Niklaus R, Buchler P (2013) The virtual skeleton database: An open access repository for biomedical research and collaboration. J Med Internet Res 15(11):e245Google Scholar
  39. 39.
    Umeyama S (1991) Least-squares estimation of transformation parameters between two point patterns. IEEE Trans Pattern Anal Mach Intell 13(4):376–380CrossRefGoogle Scholar
  40. 40.
    Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. MIT Press, Cambridge, MAGoogle Scholar
  41. 41.
    Danielsson PE (1980) Euclidean distance mapping. Comput Graph Image Process 14(3):227–248CrossRefGoogle Scholar
  42. 42.
    The insight segmentation and registration toolkit. www.itk.org
  43. 43.
    Lüthi M, Albrecht T, Gass T, Goksel O, Kistler M, Bousleiman H, Reyes M, Buechler P, Cattin PC, Vetter T (2012) Statismo—a framework for PCA based statistical models. Insight J 1:1–18Google Scholar

Copyright information

© CARS 2014

Authors and Affiliations

  • Marine Clogenson
    • 1
  • John M. Duff
    • 2
  • Marcel Luethi
    • 4
  • Marc Levivier
    • 2
  • Reto Meuli
    • 3
  • Charles Baur
    • 1
  • Simon Henein
    • 1
  1. 1.École Polytechnique Fédérale de Lausanne, Instant-LabNeuchâtelSwitzerland
  2. 2.NeurochirurgieCentre Hospitalier Universitaire Vaudois et Université de LausanneLausanneSwitzerland
  3. 3.Service de radiodiagnostic et radiologie interventionnelleCentre Hospitalier Universitaire Vaudois et Université de LausanneLausanneSwitzerland
  4. 4.Computer Science DepartmentUniversity of BaselBaselSwitzerland

Personalised recommendations