Advertisement

Electromagnetic tracking in surgical and interventional environments: usability study

  • 785 Accesses

  • 27 Citations

Abstract

Purpose

Electromagnetic (EM) tracking of instruments within a clinical setting is notorious for fluctuating measurement performance. Position location measurement uncertainty of an EM system was characterized in various environments, including control, clinical, cone beam computed tomography (CBCT), and CT scanner environments. Static and dynamic effects of CBCT and CT scanning on EM tracking were evaluated.

Methods

   Two guidance devices were designed to solely translate or rotate the sensor in a non-interfering fit to decouple pose-dependent tracking uncertainties. These devices were mounted on a base to allow consistent and repeatable tests when changing environments. Using this method, position and orientation measurement accuracies, precision, and 95 % confidence intervals were assessed.

Results

   The tracking performance varied significantly as a function of the environment—especially within the CBCT and CT scanners—and sensor pose. In fact, at a fixed sensor position in the clinical environment, the measurement error varied from 0.2 to 2.2 mm depending on sensor orientations. Improved accuracies were observed along the vertical axis of the field generator. Calibration of the measurements improved tracking performance in the CT environment by 50–85 %.

Conclusion

   EM tracking can provide effective assistance to surgeons or interventional radiologists during procedures performed in a clinical or CBCT environment. Applications in the CT scanner demand precalibration to provide acceptable performance.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Notes

  1. 1.

    The scaffolds’ STL files will be provided upon request to the corresponding author so that the experiments can be repeated by other groups.

References

  1. 1.

    Thompson S, Penney G, Dasguta P, Hawkes D (2013) Improved modelling of tool tracking errors by modelling dependent marker errors. IEEE Trans Med Imaging 32:165

  2. 2.

    Kwartowitz DM, Rettmann ME, Holmes III DR, and Robb RA (2010) A novel technique for analysis of accuracy of magnetic tracking systems used in image guided surgery. In: Proc SPIE, pp 76251L–76251L. International Society for Optics and Photonics

  3. 3.

    Yaniv Z, Wilson E, Lindisch D, Cleary K (2009) Electromagnetic tracking in the clinical environment. Med Phys 36:876

  4. 4.

    Birkfellner W, Watzinger F, Wanschitz F, Enislidis G, Kollmann C, Rafolt D, Nowotny R, Ewers R, Bergmann H (1998) Systematic distortions in magnetic position digitizers. Med Phys 25:2242

  5. 5.

    Maier-Hein L, Franz AM, Birkfellner W, Hummel J, Gergel I, Wegner I, Meinzer H-P (2012) Standardized assessment of new electromagnetic field generators in an interventional radiology setting. Med Phys 39:3424

  6. 6.

    Wilson E, Yaniv Z, Zhang H, Nafis C, Shen E, Shechter G, Wiles AD, Peters T, Lindisch D and Cleary K(2007) A hardware and software protocol for the evaluation of electromagnetic tracker accuracy in the clinical environment: a multi-center study. In: Proc SPIE, pp 65092T–65092T. International Society for Optics and Photonics

  7. 7.

    Sadjadi H, Hashtrudi-Zaad K and Fichtinger G (2014) Needle deflection estimation: prostate brachytherapy phantom experiments. Int J CARS. doi:10.1007/s11548-014-0985-0

  8. 8.

    Sadjadi H, Hashtrudi-Zaad K, Fichtinger G (2013) Fusion of electromagnetic trackers to improve needle deflection estimation: simulation study. IEEE Trans Biomed Eng 60:2706–2715

  9. 9.

    Sadjadi H, Hashtrudi-Zaad K and Fichtinger G (2012) Needle deflection estimation using fusion of electromagnetic trackers. In: 2012 annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 952–955

  10. 10.

    Shen E, Shechter G, Kruecker J, Stanton D (2007) Quantification of ac electromagnetic tracking system accuracy in a ct scanner environment. In: Proc SPIE. International Society for Optics and Photonics, pp 65090L–65090L

  11. 11.

    Cleary K, Zhang H, Glossop N, Levy E, Wood B and Banovac F (2005) Electromagnetic tracking for image-guided abdominal procedures: Overall system and technical issues. In: 27th Annual international conference of the engineering in medicine and biology society, 2005. IEEE-EMBS 2005. IEEE, pp 6748–6753

  12. 12.

    Bo LE, Leira HO, Tangen GA, Hofstad EF, Amundsen T, Lango T (2012) Accuracy of electromagnetic tracking with a prototype field generator in an interventional or setting. Med Phys 39(1):399

  13. 13.

    Schicho K, Figl M, Donat M, Birkfellner W, Seemann R, Wagner A, Bergmann H, Ewers R (2005) Stability of miniature electromagnetic tracking systems. Phys Med Biol 50(9):2089

  14. 14.

    Feuerstein M, Reichl T, Vogel J, Traub J, Navab N (2009) Magneto-optical tracking of flexible laparoscopic ultrasound: Model-based online detection and correction of magnetic tracking errors. IEEE Trans Med Imaging 28(6):951–967

  15. 15.

    Hummel J, Figl M, Kollmann C, Bergmann H, Birkfellner W (2002) Evaluation of a miniature electromagnetic position tracker. Med Phys 29:2205

  16. 16.

    Lugez E, Pichora D, Akl S, Ellis R (2014) Intraoperative ct scanning impact on electromagnetic tracking performance. Int J CARS 9(Suppl 1):S107–S108

  17. 17.

    Krücker J, Xu S, Glossop N, Viswanathan A, Borgert J, Schulz H, Wood BJ (2007) Electromagnetic tracking for thermal ablation and biopsy guidance: clinical evaluation of spatial accuracy. J Vasc Interv Radiol 18(9):1141–1150

  18. 18.

    Shen E, Shechter G, Kruecker J and Stanton D (2008) Effects of sensor orientation on ac electromagnetic tracking system accuracy in a ct scanner environment. In: Proceedings of SPIE, vol 6918, pp 691823

  19. 19.

    Lugez E, Pichora D, Akl S, Ellis R (2013) Accuracy of electromagnetic tracking in an operating-room setting. Int J CARS 8(Suppl 1):S147–S148

  20. 20.

    Lugez E, Pichora DR, Akl SG, and Ellis RE (2013) Accuracy of electromagnetic tracking in an image-guided surgery suite. Int Bone Joint J, 95-B(Supp 28):25–25

  21. 21.

    Seeberger R, Kane G, Hoffmann J, Eggers G (2012) Accuracy assessment for navigated maxillo-facial surgery using an electromagnetic tracking device. J Cranio Maxill Surg 40(2):156–161

  22. 22.

    Kral F, Puschban EJ, Riechelmann H, Freysinger W (2013) Comparison of optical and electromagnetic tracking for navigated lateral skull base surgery. Int J Med Robot Comp 9:247–252

  23. 23.

    Atuegwu NC, Galloway RL (2008) Volumetric characterization of the aurora magnetic tracker system for image-guided transorbital endoscopic procedures. Phys Med Biol 53(16):4355

  24. 24.

    Day JS, Murdoch DJ, Dumas GA (2000) Calibration of position and angular data from a magnetic tracking device. J Biomech 33(8):1039–1045

  25. 25.

    Frantz DD, Wiles AD, Leis SE, Kirsch SR (2003) Accuracy assessment protocols for electromagnetic tracking systems. Phys Med Biol 48(14):2241

  26. 26.

    Franz AM, März J, Hummel J, Birkfellner W, Bendl R, Delorme S, Schlemmer H-P, Meinzer H-P, Maier-Hein L (2012) Electromagnetic tracking for us-guided interventions: standardized assessment of a new compact field generator. Int J Comput Assist Radiol. Surg 7(6):813–818

  27. 27.

    Hummel JB, Bax MR, Figl ML, Kang Y, Maurer C, Birkfellner WW, Bergmann H, Shahidi R (2005) Design and application of an assessment protocol for electromagnetic tracking systems. Med Phys 32:2371–2379

  28. 28.

    LaScalza S, Arico J, Hughes R (2003) Effect of metal and sampling rate on accuracy of flock of birds electromagnetic tracking system. J Biomech 36:141–144

  29. 29.

    Milne AD, Chess DG, Johnson JA, King GJW (1996) Accuracy of an electromagnetic tracking device: a study of the optimal operating range and metal interference. J Biomech 29(6):791–793

  30. 30.

    Poulin F, Amiot L-P (2002) Interference during the use of an electromagnetic tracking system under or conditions. J Biomech 35(6):733–737

  31. 31.

    Stevens F, Kulkarni N, Ismaily SK, Lionberger DR (2010) Minimizing electromagnetic interference from surgical instruments on electromagnetic surgical navigation. Clin Orthop Relat Res 468(8):2244–2250

  32. 32.

    Wagner A, Schicho K, Birkfellner W, Figl M, Seemann R, König F, Kainberger F, Ewers R (2002) Quantitative analysis of factors affecting intraoperative precision and stability of optoelectronic and electromagnetic tracking systems. Med Phys 29:905

  33. 33.

    Wegner I, Teber D, Hadaschik B, Pahernik S, Hohenfellner M, Meinzer H-P, Huber J (2012) Pitfalls of electromagnetic tracking in clinical routine using multiple or adjacent sensors. Int J Med Robot Comp 9:268–273

  34. 34.

    http://www.ndigital.com/medical/products/aurora/

  35. 35.

    Arun KS, Huang TS and Blostein SD (1987) Least-squares fitting of two 3-d point sets. IEEE Trans Pattern Anal Mach Intell, PAMI-9:698–700

  36. 36.

    Ikits M, Brederson JD, Hansen CD and Hollerbach JM (2001) An improved calibration framework for electromagnetic tracking devices. In: Proceedings of the IEEE virtual reality. IEEE, pp 63–70

  37. 37.

    Kindratenko V (2000) A survey of electromagnetic position tracker calibration techniques. Virtual Real 5(3):169–182

  38. 38.

    Rampersaud YR, Simon DA, Foley KT (2001) Accuracy requirements for image-guided spinal pedicle screw placement. Spine 26(4):352–359

  39. 39.

    Liu J, Zhang Y, Li Z (2007) Improving the positioning accuracy of a neurosurgical robot system. IEEE/ASME Trans Mechatron 12(5):527–533

Download references

Acknowledgments

The authors would like to thank Dr. Abdulaziz Al Qahtani, clinical fellow, for his assistance in collecting data. This work was supported by the Natural Sciences and Engineering Research Council of Canada, and the Canada Foundation for Innovation. Gabor Fichtinger was supported as Cancer Care Ontario Research Chair.

Conflict of interest

Elodie Lugez, Hossein Sadjadi, David Pichora, Randy Ellis, and Gabor Fichtinger declare that they have no conflict of interest.

Author information

Correspondence to Gabor Fichtinger.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lugez, E., Sadjadi, H., Pichora, D.R. et al. Electromagnetic tracking in surgical and interventional environments: usability study. Int J CARS 10, 253–262 (2015). https://doi.org/10.1007/s11548-014-1110-0

Download citation

Keywords

  • Surgical navigation
  • Electromagnetic tracking
  • Accuracy analysis
  • Image-guided therapy
  • Usability study