Ameliorating slice gaps in multislice magnetic resonance images: an interpolation scheme

  • Nasser H. KashouEmail author
  • Mark A. Smith
  • Cynthia J. Roberts
Original Article



 Standard two-dimension (2D) magnetic resonance imaging (MRI) clinical acquisition protocols utilize orthogonal plane images which contain slice gaps (SG). The purpose of this work is to introduce a novel interpolation method for these orthogonal plane MRI 2D datasets. Three goals can be achieved: (1) increasing the resolution based on a priori knowledge of scanning protocol, (2) ameliorating the loss of data as a result of SG and (3) reconstructing a three-dimension (3D) dataset from 2D images.


 MRI data was collected using a 3T GE scanner and simulated using Matlab. The procedure for validating the MRI data combination algorithm was performed using a Shepp–Logan and a Gaussian phantom in both 2D and 3D of varying matrix sizes (64–512), as well as on one MRI dataset of a human brain and on an American College of Radiology magnetic resonance accreditation phantom.


 The squared error and mean squared error were computed in comparing this scheme to common interpolating functions employed in MR consoles and workstations. The mean structure similarity matrix was computed in 2D as a means of qualitative image assessment. Additionally, MRI scans were used for qualitative assessment of the method. This new scheme was consistently more accurate than upsampling each orientation separately and averaging the upsampled data.


 An efficient new interpolation approach to resolve SG was developed. This scheme effectively fills in the missing data points by using orthogonal plane images. To date, there have been few attempts to combine the information of three MRI plane orientations using brain images. This has specific applications for clinical MRI, functional MRI, diffusion-weighted imaging/diffusion tensor imaging and MR angiography where 2D slice acquisition are used. In these cases, the 2D data can be combined using our method in order to obtain 3D volume.


Image enhancement Image resolution Magnetic resonance Neuroimaging 


Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11548_2014_1002_MOESM1_ESM.pdf (162 kb)
Supplementary material 1 (pdf 161 KB)
11548_2014_1002_MOESM2_ESM.pdf (139 kb)
Supplementary material 2 (pdf 139 KB)
11548_2014_1002_MOESM3_ESM.png (2.6 mb)
Supplementary material 3 (png 2660 KB)

Supplementary material 4 (wmv 182 KB)

Supplementary material 5 (wmv 424 KB)


  1. 1.
    Roullot E, Herment A, Bloch I, Nikolova M, Mousseaux E (2000). In: Herment A (eds) Proceedings of the 15th international conference on pattern recognition, vol 3, pp 346–349. doi: 10.1109/ICPR.2000.903556
  2. 2.
    Herment A, Roullot E, Bloch I, Pellot C, Todd-Pokropek A, Mousseaux E (2002). In: Roullot E (ed) Proceedings of the IEEE international symposium on biomedical imaging, pp 947–950. doi: 10.1109/ISBI.2002.1029418
  3. 3.
    Greenspan H (2009) Super-resolution in medical imaging. Comput J 52(1):43–63. doi: 10.1093/comjnl/bxm075 Google Scholar
  4. 4.
    Weishaupt VDKD, Marincek B (2006) How does MRI work? An introduction to the physics and function of magnetic resonance imaging. Springer, BerlinGoogle Scholar
  5. 5.
    Slavin GS, Bluemke DA (2005) Spatial and temporal resolution in cardiovascular MR imaging: review and recommendations. Radiology 234(2):330–338PubMedCrossRefGoogle Scholar
  6. 6.
    Peled S, Yeshurun Y (2001) Superresolution in MRI: application to human white matter fiber tract visualization by diffusion tensor imaging. Magn Reson Med 45(1):29PubMedCrossRefGoogle Scholar
  7. 7.
    Greenspan H, Oz G, Kiryati N, Peled S (2002) MRI inter-slice reconstruction using super-resolution. Magn Reson Imaging 20(5):437PubMedCrossRefGoogle Scholar
  8. 8.
    Peeters RR, Kornprobst P, Nikolova M, Sunaert S, Vieville T, Malandain G, Deriche R, Faugeras O, Ng M, Hecke PV (2004) The use of super-resolution techniques to reduce slice thickness in functional MRI. Int J Imaging Syst Technol 14:131CrossRefGoogle Scholar
  9. 9.
    Carmi E, Liu S, Alon N, Fiat A, Fiat D (2006) Resolution enhancement in MRI. Magn Reson Imaging 24(2):133. doi: 10.1016/j.mri.2005.09.011 PubMedCrossRefGoogle Scholar
  10. 10.
    Shilling RZ, Robbie TQ, Bailloeul T, Mewes K, Mersereau RM, Brummer ME (2009) A super-resolution framework for 3-D high-resolution and high-contrast imaging using 2-D multislice MRI. IEEE Trans Med Imaging 28(5):633. doi: 10.1109/TMI.2008.2007348 PubMedCrossRefGoogle Scholar
  11. 11.
    Kashou NH (2008) Development of functional studies and methods to better understand visual function. Ph.D. thesis, The Ohio State University Google Scholar
  12. 12.
    Waltz E, Llinas J (1990) Multisensor data fusion. Artech House, BostonGoogle Scholar
  13. 13.
    Hall D (1992) Mathematical techniques in multisensor data fusion. Artech House, BostonGoogle Scholar
  14. 14.
    Hall D, Llinas J (1997) An introduction to multisensor data fusion. Proc IEEE 85(1):6. doi: 10.1109/5.554205 CrossRefGoogle Scholar
  15. 15.
    Varshney PK (1997) Scanning the special issue on data fusion. Proc IEEE 85:3Google Scholar
  16. 16.
    Shepard D (1968). In: Proceedings of the 1968 ACM national conferenceGoogle Scholar
  17. 17.
    Viola P, Wells WM III (1995) IEEE proceedings fifth international conference on computer vision. In: Computer vision, pp 16–23Google Scholar
  18. 18.
    Collignon A, Maes F, Delaere D, Vandermeulen D, Suetens P, Marchal G (1995) International conference information processing in medical imaging. In: Computational imaging and vision, pp 263–274Google Scholar
  19. 19.
    Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16(2):187PubMedCrossRefGoogle Scholar
  20. 20.
    Chen CC, Wan YL, Liu HL (2004) Quality assurance of clinical MRI scanners using ACR MRI phantom: preliminary results. J Digit Imaging 17(4):279. doi: 10.1007/s10278-004-1023-5 PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Wells WM, Viola P, Atsumi H, Nakajima S, Kikinis R (1996) Multi-modal volume registration by maximization of mutual information. Med Image Anal 1(1):35PubMedCrossRefGoogle Scholar
  22. 22.
    Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600PubMedCrossRefGoogle Scholar
  23. 23.
    Poot DHJ, Meir VV, Sijbers J (2010) General and efficient super-resolution method for multi-slice MRI. Med Image Comput Comput Assist Interv 13(Pt 1):615PubMedGoogle Scholar
  24. 24.
    Gholipour A, Estroff JA, Sahin M, Prabhu SP, Warfield SK (2010) Maximum a posteriori estimation of isotropic high-resolution volumetric MRI from orthogonal thick-slice scans. Med Image Comput Comput Assist Interv 13(Pt 2):109PubMedCentralPubMedGoogle Scholar
  25. 25.
    Gholipour A, Estroff JA, Warfield SK (2010) Robust super-resolution volume reconstruction from slice acquisitions: application to fetal brain MRI. IEEE Trans Med Imaging 29(10):1739. doi: 10.1109/TMI.2010.2051680 PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Gholipour A, Estroff JA, Barnewolt CE, Connolly SA, Warfield SK (2011) Fetal brain volumetry through MRI volumetric reconstruction and segmentation. Int J Comput Assist Radiol Surg 6(3):329. doi: 10.1007/s11548-010-0512-x PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Mahmoudzadeh AP, Kashou NH (2013) Evaluation of interpolation effects on upsampling and accuracy of cost functions-based optimized automatic image registration. Int J Biomed Imaging 2013:19. doi: 10.1155/2013/395915 CrossRefGoogle Scholar
  28. 28.
    Lehmann TM, Gonner C, Spitzer K (1999) Survey: interpolation methods in medical image processing. IEEE Trans Med Imaging 18(11):1049. doi: 10.1109/42.816070 PubMedCrossRefGoogle Scholar

Copyright information

© CARS 2014

Authors and Affiliations

  • Nasser H. Kashou
    • 1
    Email author
  • Mark A. Smith
    • 2
  • Cynthia J. Roberts
    • 3
  1. 1.BioMedical Imaging LabWright State UniversityDaytonUSA
  2. 2.Department of RadiologyNationwide Children’s HospitalColumbusUSA
  3. 3.Biomedical Engineering DepartmentThe Ohio State UniversityColumbusUSA

Personalised recommendations