Experimental evaluation of ultrasound-guided 3D needle steering in biological tissue

  • Momen Abayazid
  • Gustaaf J. Vrooijink
  • Sachin Patil
  • Ron Alterovitz
  • Sarthak Misra
Original Article

Abstract

Purpose

In this paper, we present a system capable of automatically steering bevel tip flexible needles under ultrasound guidance toward stationary and moving targets in gelatin phantoms and biological tissue while avoiding stationary and moving obstacles. We use three-dimensional (3D) ultrasound to track the needle tip during the procedure.

Methods

Our system uses a fast sampling-based path planner to compute and periodically update a feasible path to the target that avoids obstacles. We then use a novel control algorithm to steer the needle along the path in a manner that reduces the number of needle rotations, thus reducing tissue damage. We present experimental results for needle insertion procedures for both stationary and moving targets and obstacles for up to 90 mm of needle insertion.

Results

We obtained a mean targeting error of \(0.32\pm 0.10\) and \(0.38\,\pm \,0.19\) mm in gelatin-based phantom and biological tissue, respectively.

Conclusions

The achieved submillimeter accuracy suggests that our approach is sufficient to target the smallest lesions (\(\phi \) 2 mm) that can be detected using state-of-the-art ultrasound imaging systems.

Keywords

Computer-assisted surgery Medical robots and systems  Image-guided control Minimally invasive surgery Needle–tissue interactions Ultrasound 

Supplementary material

The submitted video illustrates the experimental setup and results presented in the paper. Real-time needle path planning and steering experiments are performed using ultrasound image-guidance. The video shows the results of the six experimental cases described in the paper. In addition, the targeting errors are displayed in the video (mp4 19223 KB) .

References

  1. 1.
    Boctor EM, Choti MA, Burdette EC, Webster RJ III (2008) Three-dimensional ultrasound-guided robotic needle placement: an experimental evaluation. Int J Med Robot Comput Assist Surg 4(2):180–191CrossRefGoogle Scholar
  2. 2.
    Kratchman LB, Rahman MM, Saunders JR, Swaney PJ, Webster III RJ (2011) Toward robotic needle steering in lung biopsy: a tendon-actuated approach. In: Wong KH, Holmes DR III (Eds) Proceedings of the society of photographic instrumentation engineers (SPIE), medical imaging: visualization, image-guided procedures, and modeling, vol. 7964. Florida, FL, USA, pp 79 641I-1–79 641I-8Google Scholar
  3. 3.
    Beddy P, Rangarajan RD, Sala E (2011) Role of MRI in intracavitary brachytherapy for cervical cancer: what the radiologist needs to know. Am J Roentgenol 196(3):W341–W347CrossRefGoogle Scholar
  4. 4.
    Seifabadi R, Song S-E, Krieger A, Cho N, Tokuda J, Fichtinger G, Iordachita I (2012) Robotic system for mri-guided prostate biopsy: feasibility of teleoperated needle insertion and ex vivo phantom study. Int J Comput Assist Radiol Surg 7(2):181–190PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Abolhassani N, Patel RV, Moallem M (2007) Needle insertion into soft tissue: a survey. Med Eng Phys 29(4):413–431PubMedCrossRefGoogle Scholar
  6. 6.
    Grant A, Neuberger J (1999) Guidelines on the use of liver biopsy in clinical practice. J Gastroenterl Hepatol 45(Suppl IV):IV1–IV11Google Scholar
  7. 7.
    Kallem V, Cowan NJ (2007) Image-guided control of flexible bevel-tip needles. In: Proceedings of the IEEE International conference on robotics and automation (ICRA). Italy, Rome, pp 3015–3020Google Scholar
  8. 8.
    Cowan NJ, Goldberg K, Chirikjian GS, Fichtinger G, Reed KB, Kallem V, Park W, Misra S, Okamura AM (2011) Robotic needle steering: design, modeling, planning, and image guidance. In: Rosen J, Hannaford B, Satava RM (eds) Surgical robotics. Springer, New York, pp 557–582Google Scholar
  9. 9.
    Webster RJ III, Kim JS, Cowan NJ, Chirikjian GS, Okamura AM (2006) Nonholonomic modeling of needle steering. Int J Robot Res 25(5–6):509–525CrossRefGoogle Scholar
  10. 10.
    Misra S, Reed KB, Schafer BW, Ramesh KT, Okamura AM (2010) Mechanics of flexible needles robotically steered through soft tissue. Int J Robot Res 29(13):1640–1660CrossRefGoogle Scholar
  11. 11.
    Yan KG, Podder T, Xiao D, Yu Y, Liu T, Cheng CWS, Ng WS (2006) An improved needle steering model with online parameter estimator. Int J Comput Assist Radiol Surg 1(4):205–212CrossRefGoogle Scholar
  12. 12.
    Engh JA, Podnar G, Khoo SY, Riviere CN (2006) Flexible needle steering system for percutaneous access to deep zones of the brain. In: Proceedings of the IEEE annual northeast bioengineering conference (NEBEC). Easton, USA, pp 103–104Google Scholar
  13. 13.
    Minhas DS, Engh JA, Fenske MM, Riviere CN (2007) Modeling of needle steering via duty-cycled spinning. In: Proceedings of the IEEE international conference on engineering in medicine and biology society (EMBC). Lyon, France, pp 2756–2759Google Scholar
  14. 14.
    Swaney PJ, Burgner J, Gilbert HB, Webster RJ (2013) A flexure-based steerable needle: high curvature with reduced tissue damage. IEEE Trans Biomed Eng 60(4):906–909PubMedCrossRefGoogle Scholar
  15. 15.
    DiMaio SP, Salcudean SE (2003) Needle steering and model-based trajectory planning. In: Proceedings of the international conference on medical image computing and computer-assisted intervention (MICCAI), vol 2878. Montral, Canada, pp 33–40Google Scholar
  16. 16.
    Glozman D, Shoham M (2007) Image-guided robotic flexible needle steering. IEEE Trans Robot 23(3):459–467CrossRefGoogle Scholar
  17. 17.
    Neubach Z, Shoham M (2010) Ultrasound-guided robot for flexible needle steering. IEEE Trans Biomed Eng 57(4):799–805PubMedCrossRefGoogle Scholar
  18. 18.
    Abayazid M, Roesthuis RJ, Reilink R, Misra S (2013) Integrating deflection models and image feedback for real-time flexible needle steering. IEEE Trans Robot 29(2):542–553CrossRefGoogle Scholar
  19. 19.
    Abayazid M, Kemp M, Misra S (2013) 3d flexible needle steering in soft-tissue phantoms using fiber bragg grating sensors. In: Proceedings of the IEEE international conference on robotics and automation (ICRA). Karlsruhe, Germany, pp 5823–5829Google Scholar
  20. 20.
    Chatelain P, Krupa A, Marchal M (2013) Real-time needle detection and tracking using a visually servoed 3d ultrasound probe. In: Proceedings of the IEEE international conference on robotics and automation. Karlsruhe, Germany, pp 1668–1673Google Scholar
  21. 21.
    Reed KB, Majewicz A, Kallem V, Alterovitz R, Goldberg K, Cowan NJ, Okamura AM (2011) Robot-assisted needle steering. IEEE Robot Autom Mag 18(4):35–46PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Seiler K, Singh SPN, Sukkarieh S, Durrant-Whyte HF (2012) Using lie group symmetries for fast corrective motion planning. Int J Robot Res 31(2):151–166CrossRefGoogle Scholar
  23. 23.
    Hauser K, Alterovitz R, Chentanez N, Okamura AM, Goldberg K (2009) Feedback control for steering needles through 3d deformable tissue using helical paths. In: Proceedings of robotics: science and systems (RSS), vol. 37. Seattle, USAGoogle Scholar
  24. 24.
    Alterovitz R, Branicky M, Goldberg K (2008) Motion planning under uncertainty for image-guided medical needle steering. Int J Robot Res 27(11–12):1361–1374CrossRefGoogle Scholar
  25. 25.
    Asadian A, Kermani RM, Patel RV (2011) Robot-assisted needle steering using a control theoretic approach. J Intell Robot Syst 62(3–4):397–418CrossRefGoogle Scholar
  26. 26.
    Bernardes MC, Adorno BV, Poignet P, Borges GA (2012) Semi-automatic needle steering system with robotic manipulator. In: Proceedings of the IEEE international conference on robotics and automation (ICRA). St. Paul, USA, pp 1595–1600Google Scholar
  27. 27.
    Duindam V, Alterovitz R, Sastry S, Goldber K (2008) Screw-based motion planning for bevel-tip flexible needles in 3d environments with obstacles. In: Proceedings of the IEEE international conference on robotics and automation (ICRA). Pasadena, USA, pp 2483–2488Google Scholar
  28. 28.
    Duindam V, Xu J, Alterovitz R, Sastry S, Goldberg K (2010) Three-dimensional motion planning algorithms for steerable needles using inverse kinematics. Int J Robot Res 29(7):789–800CrossRefGoogle Scholar
  29. 29.
    Park W, Wang Y, Chirikjian GS (2010) The path-of-probability algorithm for steering and feedback control of flexible needles. Int J Robot Res 29(7):813–830CrossRefGoogle Scholar
  30. 30.
    Xu J, Duindam V, Alterovitz R, Goldberg K (2008) Motion planning for steerable needles in 3d environments with obstacles using rapidly-exploring random trees and backchaining. In: Proceedings of the IEEE international conference on automation science and engineering (CASE). DC, USA, Washington, pp 41–46Google Scholar
  31. 31.
    Patil S, Alterovitz R (2010) Interactive motion planning for steerable needles in 3d environments with obstacles. In: Proceedings of IEEE RAS and EMBS international conference on biomedical robotics and biomechatronics (BioRob). Tokyo, Japan, pp 893–899Google Scholar
  32. 32.
    Aldrich JE (2007) Basic physics of ultrasound imaging. Crit Care Med 35(5):S131–S137PubMedCrossRefGoogle Scholar
  33. 33.
    Huang J, Triedman J, Vasilyev N, Suematsu Y, Cleveland R, Dupont P (2007) Imaging artifacts of medical instruments in ultrasound-guided interventions. J Ultrasound Med 26(10):1303–1322PubMedGoogle Scholar
  34. 34.
    Vrooijink GJ, Abayazid M, Misra S (2013) Real-time three-dimensional flexible needle tracking using two-dimensional ultrasound. In: Proceedings of the IEEE international conference on robotics and automation (ICRA). Karlsruhe, Germany, pp 1680–1685Google Scholar
  35. 35.
    LaValle SM (2006) Planning algorithms. Cambridge University Press, Cambridge Google Scholar
  36. 36.
    DiMaio SP, Salcudean SE (2002) Needle insertion modelling and simulation. In: Proceedings of the IEEE international conference on robotics and automation (ICRA). DC, USA, Washington, pp 2098–2105Google Scholar
  37. 37.
    Shkolnik A, Walter M, Tedrake R (2009) Reachability-guided sampling for planning under differential constraints. In: Proceedings of the IEEE international conference on robotics and automation (ICRA). Kobe, Japan, pp 2859–2865Google Scholar

Copyright information

© CARS 2014

Authors and Affiliations

  • Momen Abayazid
    • 1
  • Gustaaf J. Vrooijink
    • 1
  • Sachin Patil
    • 2
  • Ron Alterovitz
    • 3
  • Sarthak Misra
    • 1
  1. 1.MIRA-Institute for Biomedical Technology and Technical Medicine (Robotics and Mechatronics)University of TwenteEnschedeThe Netherlands
  2. 2.Department of Electrical Engineering and Computer SciencesUniversity of California at BerkeleyBerkeleyUSA
  3. 3.Department of Computer ScienceUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations