Scaling calibration in region of interest reconstruction with the 1D and 2D ATRACT algorithm

  • Yan Xia
  • Frank Dennerlein
  • Sebastian Bauer
  • Hannes Hofmann
  • Joachim Hornegger
  • Andreas Maier
Original Article



   Recently, a reconstruction algorithm for region of interest (ROI) imaging in C-arm CT was published, named Approximate Truncation Robust Algorithm for Computed Tomography (ATRACT). Even in the presence of substantial data truncation, the algorithm is able to reconstruct images without the use of explicit extrapolation or prior knowledge. However, the method suffers from a scaling and offset artifact in the reconstruction. Hence, the reconstruction results are not quantitative. It is our goal to reduce the scaling and offset artifact so that Hounsfield unit (HU) values can be used for diagnosis.


   In this paper, we investigate two variants of the ATRACT method and present the analytical derivations of these algorithms in the Fourier domain. Then, we propose an empirical correction measure that can be applied to the ATRACT algorithm, to effectively compensate the scaling and offset issue. The proposed method is evaluated on ten clinical datasets in the presence of different degrees of artificial truncation.


   With the proposed correction approach, we achieved an average relative root-mean-square error (rRMSE) of 2.81 % with respect to non-truncated Feldkamp, Davis, and Kress reconstruction, even for severely truncated data. The rRMSE is reduced to as little as 10 % of the image reconstructed without the scaling calibration.


   The reconstruction results show that ROI reconstruction of high accuracy can be achieved since the scaling and offset artifact are effectively eliminated by the proposed method. With this improvement, the HU values may be used for post-processing operations such as bone or soft tissue segmentation if some tolerance is accepted.


Region of interest imaging Dose reduction Truncation correction Scaling calibration 


Conflict of interest

Yan Xia receives financial support from Siemens AG, Healthcare Sector and Erlangen Graduate School in Advanced Optical Technologies (SAOT). Frank Dennerlein and Sebastian Bauer are with Siemens AG, Healthcare Sector, Germany.


  1. 1.
    Bier B, Maier A, Hofmann H, Schwemmer C, Xia Y, Struffert T, Hornegger J (2013) Truncation correction for VOI C-arm CT using scattered radiation. In: Proceedings of the SPIE, vol 8668, p 86682F9Google Scholar
  2. 2.
    Defrise M, Noo F, Clackdoyle R, Kudo H (2006) Truncated Hilbert transform and image reconstruction from limited tomographic data. Inverse Probl 22(3):1037–1053CrossRefGoogle Scholar
  3. 3.
    Dennerlein F (2011) Cone-beam ROI reconstruction using the Laplace operator. In: Proceedings of the fully 3D 2011, pp 80–83Google Scholar
  4. 4.
    Dennerlein F, Maier A (2012) Region-of-interest reconstruction on medical C-arms with the ATRACT algorithm. In: Proceedings of the SPIE, p 83131BGoogle Scholar
  5. 5.
    Dennerlein F, Maier A (2013) Approximate truncation robust computed tomography—ATRACT. Phys Med Biol 58:6133–6148PubMedCrossRefGoogle Scholar
  6. 6.
    Dennerlein F, Noo F, Schoendube H, Hornegger J, Lauritsch G (2006) A factorization approach for cone-beam reconstruction on a circular short-scan. IEEE Trans Med Image 27(7):887–896CrossRefGoogle Scholar
  7. 7.
    Fahrig R, Dixon R, Payne T, Morin RL, Ganguly A, Strobel N (2006) Dose and image quality for cone-beam C-arm CT system. Med Phys 33(12):4541–4550PubMedCrossRefGoogle Scholar
  8. 8.
    Feldkamp LA, Davis LC, Kress JW (1984) Practical cone beam algorithm. J Opt Soc Am 1:612–619CrossRefGoogle Scholar
  9. 9.
    Hsieh J, Chao E, Thibault J, Grekowicz B, Horst A, McOlash S, Myers TJ (2004) A novel reconstruction algorithm to extend the CT scan field-of-view. Med Phys 31(9):2385–2391PubMedCrossRefGoogle Scholar
  10. 10.
    Maier A, Jiang Z, Jordan J, Riess C, Hofmann H, Hornegger J (2013) Atlas-Based Linear Volume-of-Interest (ABL-VOI) image correction. In. Proceedings of the SPIE, vol, p 8668:86682D Google Scholar
  11. 11.
    Maier A, Scholz B, Dennerlein F (2012) Optimization-based extrapolation for truncation correction. In: 2nd CT meeting, pp 390–394Google Scholar
  12. 12.
    Noo F, Clackdoyle R, Pack JD (2004) A two-step Hilbert transform method for 2D image reconstruction. Phys Med Biol 49(17):3903–3923PubMedCrossRefGoogle Scholar
  13. 13.
    Ohnesorge B, Flohr T, Schwarz K, Heiken JP, Bae JP (2000) Efficient correction for CT image artifacts caused by objects extending outside the scan field of view. Med Phys 27(1):39–46PubMedCrossRefGoogle Scholar
  14. 14.
    Pan X, Zhou Y, Xia D (2005) Image reconstruction in peripheral and central region-of-interest and data redundancy. Med Phys 32(3):673–684PubMedCrossRefGoogle Scholar
  15. 15.
    Sourbelle K, Kachelriess M, Kalender WA (2005) Reconstruction from truncated projections in CT using adaptive detruncation. Eur Radiol 15(5):1008–1014 Google Scholar
  16. 16.
    Xia Y, Maier A, Dennerlein F, Hofmann H, Mueller K, Hornegger J (2013) Reconstruction from truncated projections in cone-beam CT using an efficient 1D filtering. In. Proceedings of the SPIE, vol 8668, p 86681CGoogle Scholar
  17. 17.
    Xia Y, Maier A, Dennerlein F, Hofmann HG, Hornegger J (2012) Efficient 2D filtering for cone-beam VOI reconstruction. In: Proceedings of the IEEE NSS-MIC, pp 2415–2420Google Scholar
  18. 18.
    Yang J, Yu H, Jiang M, Wang G (2010) High-order total variation minimization for interior tomography. Inverse probl 26(3), ID: 035,013Google Scholar
  19. 19.
    Yu H, Wang G (2009) Compressed sensing based interior tomography. Phys Med Biol 54(9):2791–2805PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© CARS 2014

Authors and Affiliations

  • Yan Xia
    • 1
    • 2
  • Frank Dennerlein
    • 3
  • Sebastian Bauer
    • 3
  • Hannes Hofmann
    • 1
  • Joachim Hornegger
    • 1
    • 2
  • Andreas Maier
    • 1
  1. 1.Pattern Recognition LabFriedrich-Alexander-University Erlangen-NurembergErlangenGermany
  2. 2.Graduate School in Advanced Optical Technologies (SAOT)Friedrich-Alexander-University Erlangen-NurembergErlangenGermany
  3. 3.Healthcare SectorSiemens AGErlangenGermany

Personalised recommendations