Advertisement

MITK-US: real-time ultrasound support within MITK

  • K. MärzEmail author
  • A. M. Franz
  • A. Seitel
  • A. Winterstein
  • R. Bendl
  • S. Zelzer
  • M. Nolden
  • H. -P. Meinzer
  • L. Maier-Hein
Original Article

Abstract

Purpose

   Intra-procedural acquisition of the patient anatomy is a key technique in the context of computer-assisted interventions (CAI). Ultrasound (US) offers major advantages as an interventional imaging modality because it is real time and low cost and does not expose the patient or physician to harmful radiation. To advance US-related research, the purpose of this paper was to develop and evaluate an open-source framework for US-based CAI applications.

Materials and methods

   We developed the open-source software module MITK-US for acquiring and processing US data as part of the well-known medical imaging interaction toolkit (MITK). To demonstrate its utility, we applied the module to implement a new concept for US-guided needle insertion. Performance of the US module was assessed by determining frame rate and latency for both a simple sample application and a more complex needle guidance system.

Results

   MITK-US has successfully been used to implement both sample applications. Modern laptops achieve frame rates above 24 frames per second. Latency is measured to be approximately 250 ms or less.

Conclusion

   MITK-US can be considered a viable rapid prototyping environment for US-based CAI applications.

Keywords

Ultrasound Open source Tracked ultrasound Computer-assisted interventions Ultrasound-guided interventions 

Notes

Acknowledgments

This work was carried out with the support of the German Research Foundation (DFG) as part of project A02, SFB/TRR 125 Cognition-Guided Surgery.

Conflict of interest

Keno März, Alfred M. Franz, Alexander Seitel, Adrian Winterstein, Rolf Bendl, Sascha Zelzer, Marco Nolden, Hans-Peter Meinzer and Lena Maier-Hein declare that they have no conflicts of interest.

References

  1. 1.
    Cleary K, Peters TM (2010) Image-guided interventions: technology review and clinical applications. Annu Rev Biomed Eng 12(1):119–142. doi: 10.1146/annurev-bioeng-070909-105249. PMID: 20415592Google Scholar
  2. 2.
    Clevert DA, Paprottka PM, Helck A, Reiser M, Trumm CG (2012) Image fusion in the management of thermal tumor ablation of the liver. Clin Hemorheol Microcirc [Epub ahead of print]. doi: 10.3233/CH-2012-1598
  3. 3.
    Figl M, Ede C, Hummel J, Wanschitz F, Ewers R, Bergmann H, Birkfellner W (2005) A fully automated calibration method for an optical see-through head-mounted operating microscope with variable zoom and focus. IEEE Trans Med Imaging 24(11):1492–1499PubMedCrossRefGoogle Scholar
  4. 4.
    Franz AM, März K, Hummel J, Birkfellner W, Bendl R, Delorme S, Schlemmer H-P, Meinzer H-P, Maier-Hein L (2012) Electromagnetic tracking for US-guided interventions: standardized assessment of a new compact field generator. Int J Comput Assist Radial Surg 7(6):813–818Google Scholar
  5. 5.
    Franz AM, Seitel A, Servatius M, Zöllner C, Gergel I, Wegner I, Neuhaus J, Zelzer S, Nolden M, Gaa J, Mercea P, Yung K, Sommer CM, Radeleff BA, Schlemmer HP, Kauczor HU, Meinzer HP, Maier-Hein L (2012) Simplified development of image-guided therapy software with MITK-IGT. In: Proceedings of SPIE medical imaging 2012: image processing, pp 83162J–83162J8. doi: 10.1117/12.911421
  6. 6.
    Ince DC, Hatton L, Graham-Cumming J (2012) The case for open computer programs. Nature 482(7386):485–488. doi: 10.1038/nature10836 PubMedCrossRefGoogle Scholar
  7. 7.
    Lasso A, Heffter T, Pinter C, Ungi T, Fichtinger G (2011) PLUS: An open-source toolkit for developing ultrasound-guided intervention systems. In: Proceedings 4th NCIGT NIH image guided therapy workshop, Vol 4, Arlington, VA, P 103Google Scholar
  8. 8.
    Maier-Hein L, Franz AM, Birkfellner W, Hummel J, Gergel I, Wegner I, Meinzer HP (2012) Standardized assessment of new electromagnetic field generators in an interventional radiology setting. Med Phys 39(6):3424–3434PubMedCrossRefGoogle Scholar
  9. 9.
    Maier-Hein L, Tekbas A, Seitel A, Pianka F, Müller SA, Satzl S, Schawo S, Radeleff B, Franz RTAM, Müller-Stich BP, Wolf I, Kauczor HU, Schmied BM, Meinzer HP (2008) In vivo accuracy assessment of a needle-based navigation system for CT-guided radiofrequency ablation of the liver. Med Phys 35(12):5385–5396PubMedCrossRefGoogle Scholar
  10. 10.
    März K, Franz AM, Stieltjes B, Iszatt J, Seitel A, Radeleff BA, Meinzer HP, Maier-Hein L (2013) Mobile em field generator for ultrasound guided navigated needle insertions. In: IPCAI, pp 71–80Google Scholar
  11. 11.
    Mercier L, Langø T, Lindseth F, Collins D (2005) A review of calibration techniques for freehand 3-d ultrasound systems. Ultrasound Med Biol 31(4):449–471. doi: 10.1016/j.ultrasmedbio.2004.11.015 PubMedCrossRefGoogle Scholar
  12. 12.
    Müller M, Rassweiler MC, Klein J, Seitel A, Gondan M, Baumhauer M, Teber D, Rassweiler J, Meinzer HP, Maier-Hein L (2013) Mobile augmented reality for computer-assisted percutaneous nephrolithotomy. Int J Comput Assist Radiol Surg 8(4):663–675. doi: 10.1007/s11548-013-0828-4 Google Scholar
  13. 13.
    Muratore DM, Galloway RL (2001) Beam calibration without a phantom for creating a 3-d freehand ultrasound system. Ultrasound Med Biol 27(11):1557–1566Google Scholar
  14. 14.
    Navab N, Taylor R, Yang GZ (eds) (2012) Guest Editorial: Special issue on interventional imaging. IEEE Trans Med Imaging 12(4):857–859Google Scholar
  15. 15.
    Noble JA, Boukerroui D (2006) Ultrasound image segmentation: a survey. IEEE Trans Med Imaging 25(8):987–1010. doi: 10.1109/TMI.2006.877092 PubMedCrossRefGoogle Scholar
  16. 16.
    Nolden M, Zelzer S, Seitel A, Wald D, Müller M, Franz A, Maleike D, Fangerau M, Baumhauer M, Maier-Hein L, Maier-Hein K, Meinzer HP, Wolf I (2013) The medical imaging interaction toolkit: challenges and advances. Int J Comput Assist Radiol Surg 8(4):607–620. doi: 10.1007/s11548-013-0840-8 PubMedCrossRefGoogle Scholar
  17. 17.
    Read P, Meyer M (2000) Restoration of motion picture film. Butterworth–Heinemann series in conservation and museology. Elsevier, AmsterdamGoogle Scholar
  18. 18.
    Seitel A, Yung K, Mersmann S, Kilgus T, Groch A, Santos T, Franz A, Nolden M, Meinzer HP, Maier-Hein L (2012) MITK-ToF—range data within MITK. Int J Comput Assist Radiol Surg 7(1):87–96. doi: 10.1007/s11548-011-0617-x PubMedCrossRefGoogle Scholar
  19. 19.
    Teather R, Pavlovych A, Stuerzlinger W, MacKenzie I (2009) Effects of tracking technology, latency, and spatial jitter on object movement. In: IEEE symposium on 3D user interfaces, 2009 (3DUI 2009), pp 43–50. doi: 10.1109/3DUI.2009.4811204
  20. 20.
    Wang DC, Chang W, Stetten GD (2005) Real-time ultrasound image analysis for the insight toolkit. Special issue of The Insight Journal, MICCAI 2005: Workshop on Open-Source SoftwareGoogle Scholar
  21. 21.
    Wolf I, Vetter M, Wegner I, Böttger T, Nolden M, Schöbinger M, Hastenteufel M, Kunert T, Meinzer HP (2005) The medical imaging interaction toolkit. Med Image Anal 9(6):594–604. doi: 10.1016/j.media.2005.04.005 PubMedCrossRefGoogle Scholar
  22. 22.
    Wu X, Taylor R (2003) A framework for calibration of electromagnetic surgical navigation system. In: Proceedings of the 2003 IEEE/RSJ international conference on intelligent robots and systems, 2003 (IROS 2003), vol 1, pp 547–552. doi: 10.1109/IROS.2003.1250686

Copyright information

© CARS 2013

Authors and Affiliations

  • K. März
    • 1
    Email author
  • A. M. Franz
    • 1
  • A. Seitel
    • 1
  • A. Winterstein
    • 1
  • R. Bendl
    • 1
    • 2
  • S. Zelzer
    • 1
  • M. Nolden
    • 1
  • H. -P. Meinzer
    • 1
  • L. Maier-Hein
    • 1
  1. 1.German Cancer Research Center (DKFZ)HeidelbergGermany
  2. 2.Medical InformaticsHeilbronn UniversityHeilbronnGermany

Personalised recommendations