Advertisement

The Medical Imaging Interaction Toolkit: challenges and advances

10 years of open-source development
  • Marco NoldenEmail author
  • Sascha Zelzer
  • Alexander Seitel
  • Diana Wald
  • Michael Müller
  • Alfred M. Franz
  • Daniel Maleike
  • Markus Fangerau
  • Matthias Baumhauer
  • Lena Maier-Hein
  • Klaus H. Maier-Hein
  • Hans -Peter Meinzer
  • Ivo Wolf
Original Article

Abstract

Purpose

   The Medical Imaging Interaction Toolkit (MITK) has been available as open-source software for almost 10 years now. In this period the requirements of software systems in the medical image processing domain have become increasingly complex. The aim of this paper is to show how MITK evolved into a software system that is able to cover all steps of a clinical workflow including data retrieval, image analysis, diagnosis, treatment planning, intervention support, and treatment control.

Methods

   MITK provides modularization and extensibility on different levels. In addition to the original toolkit, a module system, micro services for small, system-wide features, a service-oriented architecture based on the Open Services Gateway initiative (OSGi) standard, and an extensible and configurable application framework allow MITK to be used, extended and deployed as needed. A refined software process was implemented to deliver high-quality software, ease the fulfillment of regulatory requirements, and enable teamwork in mixed-competence teams.

Results

   MITK has been applied by a worldwide community and integrated into a variety of solutions, either at the toolkit level or as an application framework with custom extensions. The MITK Workbench has been released as a highly extensible and customizable end-user application. Optional support for tool tracking, image-guided therapy, diffusion imaging as well as various external packages (e.g. CTK, DCMTK, OpenCV, SOFA, Python) is available. MITK has also been used in several FDA/CE-certified applications, which demonstrates the high-quality software and rigorous development process.

Conclusions

   MITK provides a versatile platform with a high degree of modularization and interoperability and is well suited to meet the challenging tasks of today’s and tomorrow’s clinically motivated research.

Keywords

Open-source Medical image analysis Platform Extensible Service-oriented architecture Software process Quality management Image-guided therapy 

Notes

Acknowledgments

We wish to thank the contributors to MITK, which cannot all be listed here. There have been more than one hundred over the time, more than fifty active ones in the last twelve months, thank you! Special thanks to Matt Clarkson for last minute proof-reading!

Conflict of Interest

None.

References

  1. 1.
    Allard J, Cotin S, Faure F, Bensoussan P, Poyer F, Duriez C, Delingette H, Grisoni L (2007) SOFA: an open source framework for medical simulation. In: Medicine meets virtual reality (MMVR 15)Google Scholar
  2. 2.
    Baumhauer M, Simpfendörfer T, Stich BM, Teber D, Gutt C, Rassweiler J, Meinzer HP, Wolf I (2008) Soft tissue navigation for laparoscopic partial nephrectomy. Int J Comput Assist Radiol Surg 3:307–314CrossRefGoogle Scholar
  3. 3.
    Bradski G, Kaehler A (2008) Learning OpenCV: computer vision with the OpenCV library. O’Reilly, IrelandGoogle Scholar
  4. 4.
    Chacon S (2009) Pro git. Apress, New York CityGoogle Scholar
  5. 5.
    Enquobahrie A, Cheng P, Gary K, Ibanez L, Gobbi D, Lindseth F, Yaniv Z, Aylward S, Jomier J, Cleary K (2007) The image-guided surgery toolkit IGSTK: an open source C++ software toolkit. J Digit Imaging 20(Suppl 1):21–33. doi: 10.1007/s10278-007-9054-3 Google Scholar
  6. 6.
    Franz AM, Seitel A, Servatius M, Zöllner C, Gergel I, Wegner I, Neuhaus J, Zelzer S, Nolden M, Gaa J, Mercea P, Yung K, Sommer CM, Radeleff, BA, Schlemmer HP, Kauczor HU, Meinzer HP, Maier-Hein L (2012) Simplified development of image-guided therapy software with MITK-IGT. In: SPIE medical imaging 2012: image-guided procedures, robotic interventions, and modeling, vol 8316, p 83162J (8 pages). doi: 10.1117/12.911421
  7. 7.
    Fritzsche KH, Neher P, Reicht I, Bruggen T, Goch C, Reisert M, Nolden M, Zelzer S, Meinzer H, Stieltjes B (2012) Mitk diffusion imaging. Methods Inf Med 51(5):441–448PubMedCrossRefGoogle Scholar
  8. 8.
    Gergel I, Tetzlaff R, Meinzer HP, Wegner I (2011) An electromagnetic navigation system for transbronchial interventions with a novel approach to respiratory motion compensation. Med Phys 38:6742–6753PubMedCrossRefGoogle Scholar
  9. 9.
    Ibanez L, Schroeder W, Ng L, Cates J (2005) The ITK software guide, 2nd edn. Kitware, Inc. ISBN 1-930934-15-7Google Scholar
  10. 10.
    Ince DC, Hatton L, Graham-Cumming J (2012) The case for open computer programs. Nature 482(7386):485–488. doi: 10.1038/nature10836 PubMedCrossRefGoogle Scholar
  11. 11.
    Kennedy DN, Haselgrove C, Buccigrossi R, Grethe JS (2009) Software development for neuroimaging: promoting community access and best practices through nitrc. In: ISBI. IEEE, pp 1146–1149Google Scholar
  12. 12.
    Lakos J (1996) Large-scale C++ software design. Addison-Wesley professional computing series. Addison-Wesley. http://books.google.de/books?id=AuMpAQAAMAAJ
  13. 13.
    Lehmann G, Pincus Z, Regrain B (2006) WrapITK: enhanced languages support for the insight toolkit. Insight J 1 Google Scholar
  14. 14.
    McAffer J, Lemieux J, Aniszczyk C (2010) Eclipse rich client platform. Eclipse Series. Pearson Education. http://books.google.de/books?id=fbxdpDTeELoC
  15. 15.
    Müller M, Rassweiler MC, Klein J, Seitel A, Gondan M, Baumhauer M, Teber D, Rassweiler JJ, Meinzer HP, Maier-Hein L (2013) Mobile augmented reality for computer-assisted percutaneous nephrolithotomy. Int J CARS 1–13. doi: 10.1007/s11548-013-0828-4
  16. 16.
    Neuhaus J, Maleike D, Nolden M, Kenngott HG, Meinzer HP, Wolf I (2009) A quality-refinement process for medical imaging applications. Method Inform Med 48(4):336–339. doi: 10.3414/ME9232 CrossRefGoogle Scholar
  17. 17.
    Nevatia Y, Chintamani K, Meyer T, Blum T, Runge A, Fritz N (2011) Computer aided medical diagnosis and surgery system: towards automated medical diagnosis for long term space missions. In: 11th symposium on advanced space technologies in robotics and automation (ASTRA). esaGoogle Scholar
  18. 18.
    OSGI Alliance (2009) OSGi Service Platform, core specification, release 4, version 4.2. Technical report, OSGI AllianceGoogle Scholar
  19. 19.
    Parker SG, Johnson CR (1995) SCIRun: a scientific programming environment for computational steering. SC conference 0, 52. doi: 10.1109/SUPERC.1995.66
  20. 20.
    Pieper S, Halle M, Kikinis R (2004) 3D Slicer. In: IEEE international symposium on biomedical imaging: from Nano To Macro, pp 632–635Google Scholar
  21. 21.
    Rosset A, Spadola L, Ratib O (2004) OsiriX: an open-source software for navigating in multidimensional dicom images. J Digit Imaging 17:205–216. doi: 10.1007/s10278-004-1014-6 PubMedCrossRefGoogle Scholar
  22. 22.
    Saruji D, Müller M, Meinzer HP (2011) Schnelles Prototyping für die medizinische Bildverarbeitung. In: Handels H, Erhardt J, Deserno T, Meinzer HP, Tolxdorff T (eds) Bildverarbeitung für die Medizin, pp 199–203. Lübeck, GermanyGoogle Scholar
  23. 23.
    Seitel A, Engel M, Sommer CM, Radeleff BA, Essert-Villard C, Baegert C, Fangerau M, Fritzsche KH, Yung K, Meinzer HP, Maier-Hein L (2011) Computer-assisted trajectory planning for percutaneous needle insertions. Med Phys 38(6):3246–3259PubMedCrossRefGoogle Scholar
  24. 24.
    Seitel A, Yung K, Mersmann S, Kilgus T, Groch A, dos Santos T, Franz A, Nolden M, Meinzer H, Maier-Hein L (2012) MITK-ToF: range data within MITK. Int J Comput Assist Radiol Surg 7(1):87–96PubMedCrossRefGoogle Scholar
  25. 25.
    Wolf I (2011) Toolkits and software for developing biomedical image processing and analysis applications. In: Deserno TM (ed) Biomedical image processing, biological and medical physics, biomedical engineering. Springer, Berlin, pp 521–544. doi: 10.1007/978-3-642-15816-2_21
  26. 26.
    Wolf I, Vetter M, Wegner I, Böttger T, Nolden M, Schöbinger M, Hastenteufel M, Kunert T, Meinzer HP (2005) The medical imaging interaction toolkit. Med Image Anal 9(6):594–604. doi: 10.1016/j.media.2005.04.005 PubMedCrossRefGoogle Scholar

Copyright information

© CARS 2013

Authors and Affiliations

  • Marco Nolden
    • 1
    Email author
  • Sascha Zelzer
    • 1
  • Alexander Seitel
    • 1
  • Diana Wald
    • 1
  • Michael Müller
    • 1
  • Alfred M. Franz
    • 1
  • Daniel Maleike
    • 3
  • Markus Fangerau
    • 1
  • Matthias Baumhauer
    • 1
    • 3
  • Lena Maier-Hein
    • 1
  • Klaus H. Maier-Hein
    • 1
  • Hans -Peter Meinzer
    • 1
  • Ivo Wolf
    • 2
  1. 1.Division of Medical and Biological Informatics (E130)German Cancer Research CenterHeidelbergGermany
  2. 2.Mannheim University of Applied SciencesMannheimGermany
  3. 3.Mint Medical GmbHDossenheim, HeidelbergGermany

Personalised recommendations