Automated infarction core delineation using cerebral and perfused blood volume maps

  • Petr Maule
  • Jana Klečková
  • Vladimír Rohan
  • Radek Tupý
Original Article



Thrombolytic therapy in patients with acute ischemic stroke is contraindicated when the infarction core exceeds a given threshold. To date, there are no standardized guidelines for computed tomography infarction core assessment. Current practice involves use of thresholding methods, where the results are further adjusted by an experienced physician. An automated method for infarction core delineation and volume measurement was developed and tested.

Materials and methods

CT postprocessing software was developed for analysis of whole brain perfused blood volume (PBV) and cerebral blood volume (CBV) maps. The program was designed for potential use with mean transit time (MTT) or cerebral blood flow (CBF) maps. The proposed method was tested on a set of 12 patients on both PBV and CBV maps with whole brain coverage by comparison with the results of a simple thresholding method and with manually marked findings provided by two independent physicians.


The proposed method produced a marked infarct core volume corresponding to 53 % of the manually delineated volumes. The simple thresholding method with the optimal threshold, using the same dataset, marked 15\(\times \) larger volume compared to the volume delineated by physicians.


An automated infarction core segmentation method based on local neighborhood features was developed and tested, demonstrating its utility in distinguishing between infarcted and non-infarcted areas, as well as reduction in the number of false positives and volume error.


Infarction core delineation  Computed tomography Cerebral blood volume  Perfused blood volume 



The research was supported by a grant from the Grant Agency of the Czech Republic—Microstructure-oriented hierarchical modeling of brain perfusion for CT-based cerebral blood flow evaluation, no. 106/09/0740.

Conflict of interest



  1. 1.
    Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42Google Scholar
  2. 2.
    Bidgood WD, Horii SC (1992) Introduction to the ACR-NEMA DICOM standard. Radiographics 12(2):345–355PubMedGoogle Scholar
  3. 3.
    Bivard A, McElduff P, Spratt N, Levi C, Parsons M (2011) Defining the extent of irreversible brain ischemia using perfusion computed tomography. Cerebrovasc Dis 31:238–245. doi: 10.1159/000321897 PubMedCrossRefGoogle Scholar
  4. 4.
    Campbell BC, Christensen S, Levi CR, Desmond PM, Donnan GA, Davis SM, Parsons MW (2011) Cerebral blood flow is the optimal ct perfusion parameter for assessing infarct core. Stroke 42(12):3435–3440. doi: 10.1161/STROKEAHA.111.618355 Google Scholar
  5. 5.
    Campbell BC, Christensen S, Levi CR, Desmond PM, Donnan GA, Davis SM, Parsons MW (2012) Comparison of computed tomography perfusion and magnetic resonance imaging perfusion-diffusion mismatch in ischemic stroke. Stroke 43(10):2648–2653. doi: 10.1161/STROKEAHA.112.660548 PubMedCrossRefGoogle Scholar
  6. 6.
    Grigaitis D, Bartkute V, Sakalauskas L (2007) An optimization of system for automatic recognition of ischemic stroke areas in computed tomography images. Informatica 18(4):603–614Google Scholar
  7. 7.
    Hamberg LM, Hunter GJ, Kierstead D, Lo EH, Wolf GL (1996) Measurement of cerebral blood volume with subtraction three-dimensional functional CT. Am J Neuroradiol 17(10):1861–1869PubMedGoogle Scholar
  8. 8.
    Ibanez L, Schroeder W, Ng L, Cates J (2003) The ITK software guide, 1st edn. Kitware, Inc. ISBN 1-930934-10-6,
  9. 9.
    Kamalian S, Kamalian S, Maas MB, Goldmacher GV, Payabvash S, Akbar A, Schaefer PW, Furie KL, Gonzalez RG, Lev MH (2011) CT cerebral blood flow maps optimally correlate with admission diffusion-weighted imaging in acute stroke but thresholds vary by postprocessing platform. Stroke 42(7):1923–1928. doi: 10.1161/STROKEAHA.110.610618 PubMedCrossRefGoogle Scholar
  10. 10.
    Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ (2006) Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367(9524):1747–1757. doi: 10.1016/S0140-6736(06)68770-9 PubMedCrossRefGoogle Scholar
  11. 11.
    Maule P, Kleckova J, Rohan V, Tupy R (2012) Automated infarction core delineation. In: The seventh international multi-conference on computing in the global information technology (ICCGI 2012) vol 1, pp 127–130Google Scholar
  12. 12.
    Ourselin S, Roche A, Prima S, Ayache N (2000) Block matching: a general framework to improve robustness of rigid registration of medical images. In: Delp S, DiGoia A, Jaramaz B (eds) Medical image computing and computer-assisted intervention—MICCAI 2000 (Lecture Notes in Computer Science), vol 1935. Springer, Berlin/Heidelberg, p CH373. doi: 10.1007/978-3-540-40899-4_57
  13. 13.
    Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639. doi: 10.1109/34.56205 CrossRefGoogle Scholar
  14. 14.
    Sabatini U, Celsis P, Viallard G, Rascol A, Marc-Vergnes J (1991) Quantitative assessment of cerebral blood volume by single-photon emission computed tomography. Stroke 22(3):324–330. doi: 10.1161/01.STR.22.3.324 PubMedCrossRefGoogle Scholar
  15. 15.
    Schaefer PW, Roccatagliata L, Ledezma C, Hoh B, Schwamm LH, Koroshetz W, Gonzalez RG, Lev MH (2006) First-pass quantitative CT perfusion identifies thresholds for salvageable penumbra in acute stroke patients treated with intra-arterial therapy. AJNR Am J Neuroradiol 27(1):20–5PubMedGoogle Scholar
  16. 16.
    Srinivasan A, Goyal M, Azri FA, Lum C (2006) State-of-the-art imaging of acute stroke1. Radiographics 26(suppl 1):S75–S95. doi: 10.1148/rg.26si065501 PubMedCrossRefGoogle Scholar
  17. 17.
    Toussaint N, christophe Souplet J, Fillard P (2007) Medinria: medical image navigation and research tool by INRIA. In: Proceedings of MICCAI workshop on interaction in medical image analysis and visualizationGoogle Scholar
  18. 18.
    Usinskas A, Navakauskas D (2003) Segmentation of ischemic stroke in CT images of human brain. Technical Report LiTH-ISY-R-2500, Department of Electrical Engineering, Linköping University, SE-581 83 Linköping, SwedenGoogle Scholar
  19. 19.
    Wintermark M, Flanders AE, Velthuis B, Meuli R, van Leeuwen M, Goldsher D, Pineda C, Serena J, Waaijer A, Anderson J, Nesbit G, Gabriely I, Medina V, Quiles A, Pohlman S, Quist M, Schnyder P, Bogousslavsky J, Dillon WP, Pedraza S (2006) Perfusion-CT assessment of infarct core and penumbra. Stroke 37(4):979–985. doi: 10.1161/01.STR.0000209238.61459.39 PubMedCrossRefGoogle Scholar

Copyright information

© CARS 2013

Authors and Affiliations

  • Petr Maule
    • 1
  • Jana Klečková
    • 1
  • Vladimír Rohan
    • 2
    • 3
  • Radek Tupý
    • 3
  1. 1.Department of Computer Science and EngineeringUniversity of West BohemiaPilsenCzech Republic
  2. 2.Department of NeurologyThe University HospitalPilsenCzech Republic
  3. 3.Department of RadiologyThe University HospitalPilsenCzech Republic

Personalised recommendations