Advertisement

Hybrid image visualization tool for 3D integration of CT coronary anatomy and quantitative myocardial perfusion PET

  • Martina Marinelli
  • Vincenzo Positano
  • Stephan G. Nekolla
  • Paolo Marcheschi
  • Giancarlo Todiere
  • Natalia Esposito
  • Stefano Puzzuoli
  • Giuseppe A. L’Abbate
  • Paolo Marraccini
  • Danilo Neglia
Original Article

Abstract

Purpose

Multimodal cardiac imaging by CTA and quantitative PET enables acquisition of patient-specific coronary anatomy and absolute myocardial perfusion at rest and during stress. In the clinical setting, integration of this information is performed visually or using coronary arteries distribution models. We developed a new tool for CTA and quantitative PET integrated 3D visualization, exploiting XML and DICOM clinical standards.

Methods

The hybrid image tool (HIT) developed in the present study included four main modules: (1) volumetric registration for spatial matching of CTA and PET data sets, (2) an interface to PET quantitative analysis software, (3) a derived DICOM generator able to build DICOM data set from quantitative polar maps, and (4) a 3D visualization tool of integrated anatomical and quantitative flow information. The four modules incorporated in the HIT tool communicate by defined standard XML files: XML-transformation and XML MIST standards.

Results

The HIT tool implements a 3D representation of CTA showing real coronary anatomy fused to PET-derived quantitative myocardial blood flow distribution. The technique was validated on 16 data sets from EVINCI study population. The validation of the method confirmed the high matching between “original” and derived data sets as well as the accuracy of the registration procedure.

Conclusions

Three-dimensional integration of patient- specific coronary artery anatomy provided by CTA and quantitative myocardial blood flow obtained from PET imaging can improve cardiac disease assessment. The HIT tool introduced in this paper may represent a significant advancement in the clinical use of this multimodal approach.

Keywords

CAD Hybrid imaging Myocardial flow reserve XML 3D visualization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Di Carli MF, Dorbala S, Hachamovitch R (2006) Integrated cardiac PET-CT for the diagnosis and management of CAD. J Nucl Cardiol 13: 139–144PubMedCrossRefGoogle Scholar
  2. 2.
    Gaemperli O, Kaufmann PA (2008) Hybrid cardiac imaging: more than the sum of its parts. J Nucl Cardiol 15: 123–126PubMedCrossRefGoogle Scholar
  3. 3.
    Di Carli MF, Hachamovitch R (2008) Hybrid PET/CT is greater than the sum of its parts. J Nucl Cardiol 15: 118–122PubMedCrossRefGoogle Scholar
  4. 4.
    Javadi MS, Lautamäki R, Merrill J, Voicu C, Epley W, McBride G, Bengel FM (2010) Definition of vascular territories on myocardial perfusion images by integration with true coronary anatomy: a hybrid PET/CT analysis. J Nucl Med 51: 198–203PubMedCrossRefGoogle Scholar
  5. 5.
    Knuuti J, Kaufmann PA (2009) Hybrid imaging: PET-CT and SPECT-CT. In: Zamorano JL et al (eds) The ESC textbook of cardiovascular imaging. Springer, London, Limited 2010, pp 89–99Google Scholar
  6. 6.
    Beller GA (2010) Recent advances and future trends in multimodality cardiac imaging. Heart Lung Circ 19: 193–209PubMedCrossRefGoogle Scholar
  7. 7.
    Marinelli M, Positano V, Tucci F, Neglia D (2012) Automatic hboxPET-CT image registration method based on mutual information and genetic algorithms. The Scientific World Journal, vol 2012, Article ID 567067, p 12. doi: 10.1100/2012/567067
  8. 8.
    Mäkelä T, Clarysse P, Sipilä O, Pauna N, Pham QC, Katila T, Magnin IE (2002) A review of cardiac image registration methods. IEEE Trans Med Imag 21: 1011–1021CrossRefGoogle Scholar
  9. 9.
    Cerqueira MD, Weissman NJ, Dilsizina V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the american heart association. Circulation 105: 539–542PubMedCrossRefGoogle Scholar
  10. 10.
    Masci PG, Marinelli M, Piacenti M, Lorenzoni V, Positano V, Lombardi M, L’Abbate A, Neglia D (2010) Myocardial structural, perfusion and metabolic correlates of left bundle branch block mechanical derangement in patients with dilated cardiomyopathy—a tagged cardiac magnetic resonance and positron emission tomography study. Circ Cardiovasc Imaging 3: 482–490PubMedCrossRefGoogle Scholar
  11. 11.
    Kaufmann PA, Camici PG (2004) Myocardial blood flow measurement by PET: technical aspects and clinical application. J Nucl Med 46: 75–88Google Scholar
  12. 12.
    Schindler TH, Schelbert HR, Quercioli A, Dilsizian V (2010) Cardiac PET imaging for detection and monitoring of coronary artery disease and microvascular health. JACC Imaging 3: 623–640CrossRefGoogle Scholar
  13. 13.
    Stolzmann P, Alkadhi H, Scheffel H, Hennemuth A, Kuehnel C, Baumueller S, Kozerke S, Falk V, Marincek B, Donati OF (2010) Image fusion of coronary CT angiography and cardiac perfusion MRI: a pilot study. Eur Radiol 20: 1174–1179PubMedCrossRefGoogle Scholar
  14. 14.
    Kajander S, Joutsiniemi E, Saraste M, Pietilä M, Ukkonen H, Saraste A, Sipilä HT, Teräs M, Mäki M, Airaksinen J, Hartiala J, Knuuti J (2010) Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease. Circulation 122: 603– 613PubMedCrossRefGoogle Scholar
  15. 15.
    Knuuti J, Kajander S, Mäki M, Ukkonen H (2009) Quantification of myocardial blood flow will reform the detection of CAD. J Nulc Cardiol 16:497–506Google Scholar
  16. 16.
    Neglia D, Michelassi C, Trivieri MG, Sambuceti G, Giorgetti A, Pratali L, Gallopin M, Salvadori P, Sorace O, Carpeggiani C, Poddighe R, L’Abbate A, Parodi O (2002) Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation 105: 186–193PubMedCrossRefGoogle Scholar
  17. 17.
    Extensible Markup Language (XML) 1.0 (Fifth Edition) W3C Recommendation 26 Nov 2008. Available: http://www.w3.org
  18. 18.
    Marinelli M, Martinez-Möller A, Jensen B, Positano V, Weissmüller S, Navab N, Landini L, Schwaiger M, Nekolla SG (2010) Registration of myocardial PET and SPECT for viability assessment using mutual information. Med Phys 37: 2414–2424PubMedCrossRefGoogle Scholar
  19. 19.
    Pluim JPW, Maintz JBA, Viergever MA (2003) Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imaging 22: 986–1004PubMedCrossRefGoogle Scholar
  20. 20.
    Viola P, Wells WM (1997) Alignment by maximization of mutual information. Int J Comput Vis 24: 137–154CrossRefGoogle Scholar
  21. 21.
    Collignon A, Vandermeulen D, Suetens P, Marchal G (1995) 3D multimodality medical image registration using feature space clustering. In: Ayache N (ed) Proceedings of the CVRMed lecture notes in computer science 905/1995. Springer, Berlin, pp 193–204Google Scholar
  22. 22.
    Nekolla SG, Miethaner C, Nguyen N, Ziegler SI, Schwaiger M (1998) Reproducibility of polar map generation and assessment of defect severity and extent assessment in myocardial perfusion imaging using positron emission tomography. Eur J Nucl Med Mol Imaging 25: 1313–1321CrossRefGoogle Scholar
  23. 23.
    Musik O, Beanlands RSB, Hutchins GD, Mangner TJ, Nguyen N, Schwaiger M (1993) Validation of nitrogen-13-ammonia tracer kinetic model for quantification of myocardial blood flow using PET. J Nucl Med 34: 83–91Google Scholar
  24. 24.
    Miller JM et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359: 2324–2336PubMedCrossRefGoogle Scholar
  25. 25.
    Meijboom WB et al (2008) Diagnostic accuracy of 64-slice computed tomography coronary angriography. A prospective, multicenter, multivendor study. J Am Coll Cardiol 52: 2135–2144PubMedCrossRefGoogle Scholar
  26. 26.
    Budoff MJ et al (2008) Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals withouit known coronary artery disease. J Am Coll Cardiol 52: 1724–1732PubMedCrossRefGoogle Scholar
  27. 27.
    Miny JK et al (2011) Age- and sex-related differences in all-cause mortality risk based on coronary computer tomography angiography findings. J Am Coll Cardiol 58: 849–860CrossRefGoogle Scholar
  28. 28.
    Marinelli M, Positano V, Marcheschi P, Todiere G, Esposito N, Puzzuoli S, Marraccini P, Lombardi L, Landini L, Neglia D (2011) Integrated visualization of coronary anatomy and quantitative MRI by CT-MRI image fusion. Magn Reson Mater Phy 24(Supp.1): 406Google Scholar
  29. 29.
    Segall G (2002) Assessment of myocardial viability by positron emission tomography. Nucl Med Commun 23: 323–330PubMedCrossRefGoogle Scholar
  30. 30.
    Saraste A, Nekolla SG, Schwaiger M (2008) Contrast-enhanced magnetic imaging in the assessment of myocardial infarction and viability. J Nucl Cardiol 15: 105–117PubMedCrossRefGoogle Scholar
  31. 31.
    Axel L, Montillo A, Kim D (2005) Tagged magnetic resonance imaging of the heart: a survey. Med Image Anal 9: 376–393PubMedCrossRefGoogle Scholar

Copyright information

© CARS 2012

Authors and Affiliations

  • Martina Marinelli
    • 1
  • Vincenzo Positano
    • 2
  • Stephan G. Nekolla
    • 3
  • Paolo Marcheschi
    • 2
  • Giancarlo Todiere
    • 2
  • Natalia Esposito
    • 1
  • Stefano Puzzuoli
    • 1
  • Giuseppe A. L’Abbate
    • 2
  • Paolo Marraccini
    • 1
  • Danilo Neglia
    • 1
    • 2
  1. 1.Institute of Clinical Physiology, CNRPisaItaly
  2. 2.Fondazione Gabriele MonasterioCNR-Regione ToscanaPisaItaly
  3. 3.Nuklearmedinische Klinik der TU MünchenMunichGermany

Personalised recommendations