Preclinical evaluation of an MRI-compatible pneumatic robot for angulated needle placement in transperineal prostate interventions

  • Junichi TokudaEmail author
  • Sang-Eun Song
  • Gregory S. Fischer
  • Iulian I. Iordachita
  • Reza Seifabadi
  • Nathan B. Cho
  • Kemal Tuncali
  • Gabor Fichtinger
  • Clare M. Tempany
  • Nobuhiko Hata
Original Article



To evaluate the targeting accuracy of a small profile MRI-compatible pneumatic robot for needle placement that can angulate a needle insertion path into a large accessible target volume.


We extended our MRI-compatible pneumatic robot for needle placement to utilize its four degrees-of-freedom (4-DOF) mechanism with two parallel triangular structures and support transperineal prostate biopsies in a closed-bore magnetic resonance imaging (MRI) scanner. The robot is designed to guide a needle toward a lesion so that a radiologist can manually insert it in the bore. The robot is integrated with navigation software that allows an operator to plan angulated needle insertion by selecting a target and an entry point. The targeting error was evaluated while the angle between the needle insertion path and the static magnetic field was between −5.7° and 5.7° horizontally and between −5.7° and 4.3° vertically in the MRI scanner after sterilizing and draping the device.


The robot positioned the needle for angulated insertion as specified on the navigation software with overall targeting error of 0.8 ± 0.5mm along the horizontal axis and 0.8 ± 0.8mm along the vertical axis. The two-dimensional root-mean-square targeting error on the axial slices as containing the targets was 1.4mm.


Our preclinical evaluation demonstrated that the MRI-compatible pneumatic robot for needle placement with the capability to angulate the needle insertion path provides targeting accuracy feasible for clinical MRI-guided prostate interventions. The clinical feasibility has to be established in a clinical study.


MRI-guided therapy Medical robotics Prostate cancer Biopsy Brachytherapy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cormack RA, D’Amico AV, Hata N, Silverman S, Weinstein M, Tempany CM (2000) Feasibility of transperineal prostate biopsy under interventional magnetic resonance guidance. Urology 56(4): 663–664. doi: 10.1016/S0090-4295(00)00698-1 PubMedCrossRefGoogle Scholar
  2. 2.
    D’Amico AV, Tempany CM, Cormack R, Hata N, Jinzaki M, Tuncali K, Weinstein M, Richie JP (2000) Transperineal magnetic resonance image guided prostate biopsy. J Urol 164(2): 385–387. doi: 10.1016/S0022-5347(05)67366-1 PubMedCrossRefGoogle Scholar
  3. 3.
    Susil RC, Krieger A, Derbyshire JA, Tanacs A, Whitcomb LL, Fichtinger G, Atalar E (2003) System for MR image-guided prostate interventions: canine study. Radiology 228(3): 886–894. doi: 10.1148/radiol.2283020911 PubMedCrossRefGoogle Scholar
  4. 4.
    Menard C, Susil RC, Choyke P, Gustafson GS, Kammerer W, Ning H, Miller RW, Ullman KL, Sears Crouse N, Smith S, Lessard E, Pouliot J, Wright V, McVeigh E, Coleman CN, Camphausen K (2004) MRI-guided HDR prostate brachytherapy in standard 1.5 T scanner. Int J Radiat Oncol Biol Phys 59(5): 1414–1423. doi: 10.1016/j.ijrobp.2004.01.016 PubMedCrossRefGoogle Scholar
  5. 5.
    Susil RC, Camphausen K, Choyke P, McVeigh ER, Gustafson GS, Ning H, Miller RW, Atalar E, Coleman CN, Menard C (2004) System for prostate brachytherapy and biopsy in a standard 1.5 T MRI scanner. Magn Reson Med 52(3): 683–687. doi: 10.1002/mrm.20138 PubMedCrossRefGoogle Scholar
  6. 6.
    Zangos S, Eichler K, Engelmann K, Ahmed M, Dettmer S, Herzog C, Pegios W, Wetter A, Lehnert T, Mack MG, Vogl TJ (2005) MR-guided transgluteal biopsies with an open low-field system in patients with clinically suspected prostate cancer: technique and preliminary results. Eur Radiol 15(1): 174–182. doi: 10.1007/s00330-004-2458-2 PubMedCrossRefGoogle Scholar
  7. 7.
    Engelhard K, Hollenbach HP, Kiefer B, Winkel A, Goeb K, Engehausen D (2006) Prostate biopsy in the supine position in a standard 1.5-T scanner under real time MR-imaging control using a MR-compatible endorectal biopsy device. Eur Radiol 16(6): 1237–1243. doi: 10.1007/s00330-005-0100-6 PubMedCrossRefGoogle Scholar
  8. 8.
    Susil RC, Menard C, Krieger A, Coleman JA, Camphausen K, Choyke P, Fichtinger G, Whitcomb LL, Coleman CN, Atalar E (2006) Transrectal prostate biopsy and fiducial marker placement in a standard 1.5 T magnetic resonance imaging scanner. J Urol 175(1): 113–120. doi: 10.1016/S0022-5347(05)00065-0 PubMedCrossRefGoogle Scholar
  9. 9.
    Blumenfeld P, Hata N, DiMaio S, Zou K, Haker S, Fichtinger G, Tempany CM (2007) Transperineal prostate biopsy under magnetic resonance image guidance: a needle placement accuracy study. J Magn Reson Imaging 26(3): 688–694. doi: 10.1002/jmri.21067 PubMedCrossRefGoogle Scholar
  10. 10.
    Hambrock T, Futterer JJ, Huisman HJ, Hulsbergen-vandeKaa C, van Basten JP, van Oort I, Witjes JA, Barentsz JO (2008) Thirty-two-channel coil 3T magnetic resonance-guided biopsies of prostate tumor suspicious regions identified on multimodality 3T magnetic resonance imaging: technique and feasibility. Invest Radiol 43(10): 686–694. doi: 10.1097/RLI.0b013e31817d0506 PubMedCrossRefGoogle Scholar
  11. 11.
    Rea M, McRobbie D, Elhawary H, Tse ZTH, Lamperth M, Young I (2008) System for 3-D real-time tracking of MRI-compatible devices by image processing. IEEE-ASME Trans Mechatron 13(3): 379–382CrossRefGoogle Scholar
  12. 12.
    Lakosi F, Antal G, Vandulek C, Kovacs A, Garamvolgyi R, Petnehazy O, Bajzik G, Hadjiev J, Repa I, Bogner P (2009) Technical feasibility of transperineal MR-guided prostate interventions in a low-field open MRI unit: canine study. Pathol Oncol Res 15(3): 315–322. doi: 10.1007/s12253-008-9111-3 PubMedCrossRefGoogle Scholar
  13. 13.
    Menard C, Chung P, Abed J, Simeonov A, Lee J, Brock K, Foltz W, O’Leary G, Elliott C, Milosevic M, Bristow R, Morton G, Warde P, Haider M (2010) Online guidance of tumor targeted prostate brachytherapy using histologically referenced MRI. Proc Intl Soc Mag Reson Med 18:6693Google Scholar
  14. 14.
    Menard C, Iupati D, Lee J, Simeonov A, Abed J, Publicover J, Chung P, Bayley A, Catton C, Milosevic M, Bristow R, Morton G, Warde P, Brock K, Haider M (2011) MRI and biopsy performance in delineating recurrent tumor boundaries after radiotherapy for prostate cancer. Proc Intl Soc Mag Reson Med 19:3072Google Scholar
  15. 15.
    Schouten MG, Bomers JG, Yakar D, Huisman H, Scheenen TW, Misra S, Futterer JJ (2011) Transrectal MRI-guided prostate biopsy: evaluation of a novel robotic technique. Proc Intl Soc Mag Reson Med 19:1060Google Scholar
  16. 16.
    Tuncali K, Tokuda J, Fedorov A, Iordachita I, Song S, Oguro S, Lasso A, Fennessy FM, Tang Y, Hata N, Tempany CM (2011) 3T MRI-guided transperineal targeted prostate biopsy: clinical feasibility, safety, and early results. Paper presented at the 19th annual meeting and exhibition, international society of magnetic resonance in medicine. Proc Intl Soc Mag Reson Med 19:53Google Scholar
  17. 17.
    Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62(1): 10–29. doi: 10.3322/caac.20138 PubMedCrossRefGoogle Scholar
  18. 18.
    Hodge KK, McNeal JE, Terris MK, Stamey TA (1989) Random systematic versus directed ultrasound guided transrectal core biopsies of the prostate. J Urol 142(1):71–74 (discussion 74–75)Google Scholar
  19. 19.
    Scherr DS, Eastham J, Ohori M, Scardino PT (2002) Prostate biopsy techniques and indications: when, where, and how? Semin Urol Oncol 20(1):18–31. doi: 10.1053/suro.2002.30395 Google Scholar
  20. 20.
    Sartor AO, Hricak H, Wheeler TM, Coleman J, Penson DF, Carroll PR, Rubin MA, Scardino PT (2008) Evaluating localized prostate cancer and identifying candidates for focal therapy. Urology 72(6 Suppl): S12–S24. doi: 10.1016/j.urology.2008.10.004 PubMedCrossRefGoogle Scholar
  21. 21.
    Tokuda J, Tuncali K, Iordachita I, Song S, Fedorov A, Oguro S, Lasso A, Fennessy F, Tang Y, Tempany C, Hata N (2011) Preliminary accuracy evaluation of 3T MRI-guided transperineal prostate biopsy with grid template. Paper presented at the 19th annual meeting and exhibition, international society of magnetic resonance in medicine. Proc Int Soc Mag Reson Med 19:3761Google Scholar
  22. 22.
    DiMaio SP, Samset E, Fischer G, Iordachita I, Fichtinger G, Jolesz F, Tempany CM (2007) Dynamic MRI scan plane control for passive tracking of instruments and devices. Med Image Comput Comput Assist Interv 10(Pt 2): 50–58PubMedGoogle Scholar
  23. 23.
    Tokuda J, Fischer GS, Csoma C, DiMaio SP, Gobbi DG, Fichtinger G, Tempany CM, Hata N (2008) Software strategy for robotic transperineal prostate therapy in closed-bore MRI. Med Image Comput Comput Assist Interv 11(Pt 2): 701–709PubMedGoogle Scholar
  24. 24.
    Chinzei K, Hata N, Jolesz F, Kikinis R (2000) MR compatible surgical assist robot: system integration and preliminary feasibility study. Med Image Comput Comput Assist Interv 3:921–930Google Scholar
  25. 25.
    DiMaio S, Pieper S, Chinzei KH, Hata N, Haker S, Kacher D, Fichtinger G, Tempany C, Kikinis R (2007) Robot-assisted needle placement in open MRI: system architecture, integration and validation. Comput Aided Surg 12: 15–24PubMedGoogle Scholar
  26. 26.
    Patriciu A, Petrisor D, Muntener M, Mazilu D, Schar M, Stoianovici D (2007) Automatic brachytherapy seed placement under MRI guidance. IEEE Trans Biomed Eng 54: 1499–1506PubMedCrossRefGoogle Scholar
  27. 27.
    Fischer GS, Iordachita I, Csoma C, Tokuda J, DiMaio SP, Tempany CM, Hata N, Fichtinger G (2008) MRI-compatible pneumatic robot for transperineal prostate needle placement. IEEE/ASME Trans Mechatron 13(3): 295–305CrossRefGoogle Scholar
  28. 28.
    van den Bosch M, Moman M, van Vulpen M, Battermann J, Duiveman E, van Schelven L, de Leeuw H, Lagendijk J, Moerland M (2010) MRI-guided robotic system for transperineal prostate interventions: proof of principle. Phys Med Biol 55: N133–N140PubMedCrossRefGoogle Scholar
  29. 29.
    Song SE, Cho N, Tokuda J, Hata N, Tempany C, Fichtinger G, Iordachita I (2010) Preliminary Evaluation of a MRI-compatible Modular Robotic System for MRI-guided Prostate Interventions. Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron 2010: 796–801. doi: 10.1109/BIOROB.2010.5626987 PubMedCrossRefGoogle Scholar
  30. 30.
    Song SE, Cho NB, Fischer G, Hata N, Tempany C, Fichtinger G, Iordachita I (2010) Development of a pneumatic robot for MRI-guided transperineal prostate biopsy and brachytherapy: new approaches. Proc IEEE Int Conf Robot Autom 2010: 2580–2585. doi: 10.1109/ROBOT.2010.5509710 Google Scholar
  31. 31.
    Seifabadi R, Song SE, Krieger A, Cho NB, Tokuda J, Fichtinger G, Iordachita I (2011) Robotic system for MRI-guided prostate biopsy: feasibility of teleoperated needle insertion and ex vivo phantom study. Int J Comput Assist Radiol Surg. doi: 10.1007/s11548-011-0598-9
  32. 32.
    Gering DT, Nabavi A, Kikinis R, Hata N, O'Donnell LJ, Grimson WE, Jolesz FA, Black PM, Wells WM 3rd (2001) An integrated visualization system for surgical planning and guidance using image fusion and an open MR. J Magn Reson Imaging 13(6): 967–975. doi: 10.1002/jmri.1139 PubMedCrossRefGoogle Scholar
  33. 33.
    Tokuda J, Fischer GS, Papademetris X, Yaniv Z, Ibanez L, Cheng P, Liu H, Blevins J, Arata J, Golby AJ, Kapur T, Pieper S, Burdette EC, Fichtinger G, Tempany CM, Hata N (2009) OpenIGTLink: an open network protocol for image-guided therapy environment. Int J Med Robot 5(4): 423–434. doi: 10.1002/rcs.274 PubMedCrossRefGoogle Scholar
  34. 34.
    Schouten MG, Ansems J, Renema WK, Bosboom D, Scheenen TW, Futterer JJ (2010) The accuracy and safety aspects of a novel robotic needle guide manipulator to perform transrectal prostate biopsies. Med Phys 37(9): 4744–4750PubMedCrossRefGoogle Scholar
  35. 35.
    Krieger A, Iordachita II, Guion P, Singh AK, Kaushal A, Menard C, Pinto PA, Camphausen K, Fichtinger G, Whitcomb LL (2011) An MRI-compatible robotic system with hybrid tracking for MRI-guided prostate intervention. IEEE Trans Biomed Eng 58(11): 3049–3060. doi: 10.1109/TBME.2011.2134096 PubMedCrossRefGoogle Scholar
  36. 36.
    Muntener M, Patriciu A, Petrisor D, Mazilu D, Bagga H, Kavoussi L, Cleary K, Stoianovici D (2006) Magnetic resonance imaging compatible robotic system for fully automated brachytherapy seed placement. Urology 68(6): 1313–1317. doi: 10.1016/j.urology.2006.08.1089 PubMedCrossRefGoogle Scholar
  37. 37.
    Seifabadi R, Cho NB, Song SE, Tokuda J, Hata N, Tempany CM, Fichtinger G, Iordachita I (2012) Accuracy study of a MRI-guided robotic system for prostate biopsy. Int J Med Robot (in press)Google Scholar
  38. 38.
    Tincher SA, Kim RY, Ezekiel MP, Zinsli T, Fiveash JB, Raben DA, Bueschen AJ, Urban DA (2000) Effects of pelvic rotation and needle angle on pubic arch interference during transperineal prostate implants. Int J Radiat Oncol Biol Phys 47(2): 361–363. doi: 10.1016/S0360-3016(00)00434-X PubMedCrossRefGoogle Scholar
  39. 39.
    Stoianovici D, Song D, Petrisor D, Ursu D, Mazilu D, Muntener M, Schar M, Patriciu A (2007) “MRI stealth” robot for prostate interventions. Minim Invasive Ther Allied Technol 16(4): 241–248. doi: 10.1080/13645700701520735 PubMedCrossRefGoogle Scholar
  40. 40.
    Elhawary H, Zivanovic A, Rea M, Tse ZT, McRobbie D, Young I, Paley M, Davies B, Lamperth M (2007) A MR compatible mechatronic system to facilitate magic angle experiments in vivo. Med Image Comput Comput Assist Interv 10(Pt 2): 604–611PubMedGoogle Scholar
  41. 41.
    Taillant E, Avila-Vilchis J, Allegrini C, Bricault I, Cinquin P (2004) CT and MR compatible light puncture robot: architectural design and first experiments. Med Image Comput Comput Assist Interv 7: 145–152Google Scholar
  42. 42.
    Suzuki T, Liao H, Kobayashi E, Sakuma I (2007) Ultrasonic motor driving method for EMI-free image in MR image-guided surgical robotic system. Proc IEEE/RSJ Int Conf Intell Robots Syst 2007: 522–527Google Scholar
  43. 43.
    Elhawary H, Zivanovic A, Rea M, Davies B, Besant C, McRobbie D, de Souza N, Young I, Lamprth M (2006) The feasibility of MR-image guided prostate biopsy using piezoceramic motors inside or near to the magnet isocentre. Med Image Comput Comput Assist Interv 9(Pt 1): 519–526PubMedGoogle Scholar

Copyright information

© CARS 2012

Authors and Affiliations

  • Junichi Tokuda
    • 1
    Email author
  • Sang-Eun Song
    • 1
  • Gregory S. Fischer
    • 2
  • Iulian I. Iordachita
    • 3
  • Reza Seifabadi
    • 5
  • Nathan B. Cho
    • 4
  • Kemal Tuncali
    • 1
  • Gabor Fichtinger
    • 5
  • Clare M. Tempany
    • 1
  • Nobuhiko Hata
    • 1
  1. 1.Department of RadiologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Worcester Polytechnic Institute100 Institute RoadWorcesterUSA
  3. 3.Laboratory for Computational Sensing and RoboticsJohns Hopkins UniversityBaltimoreUSA
  4. 4.Department of Computer ScienceJohns Hopkins UniversityBaltimoreUSA
  5. 5.School of ComputingQueen’s UniversityKingstonCanada

Personalised recommendations