Advertisement

Virtual mastoidectomy performance evaluation through multi-volume analysis

  • Thomas KerwinEmail author
  • Don Stredney
  • Gregory Wiet
  • Han-Wei Shen
Original Article

Abstract

Purpose

Development of a visualization system that provides surgical instructors with a method to compare the results of many virtual surgeries (n > 100).

Methods

A masked distance field models the overlap between expert and resident results. Multiple volume displays are used side-by-side with a 2D point display.

Results

Performance characteristics were examined by comparing the results of specific residents with those of experts and the entire class.

Conclusions

The software provides a promising approach for comparing performance between large groups of residents learning mastoidectomy techniques.

Keywords

Volume feature extraction Comparative visualization Mastoidectomy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11548_2012_687_MOESM1_ESM.wmv (35.9 mb)
ESM 1 (WMV 36717 kb)

References

  1. 1.
    Bruckner S, Möller T. (2010) Isosurface similarity maps. Comput Graph Forum 29(3): 773–782. doi: 10.1111/j.1467-8659.2009.01689.x CrossRefGoogle Scholar
  2. 2.
    Caban JJ, Rheingans P (2008) Texture-based transfer functions for direct volume rendering. IEEE Trans Vis Comput Graph 14(6): 1364–1371. doi: 10.1109/TVCG.2008.169 PubMedCrossRefGoogle Scholar
  3. 3.
    Correa CD, Ma KL (2008) Size-based transfer functions: a new volume exploration technique. IEEE Trans Vis Comput Graph 14(6): 1380–1387. doi: 10.1109/TVCG.2008.162 PubMedCrossRefGoogle Scholar
  4. 4.
    Ellis G, Dix A (2007) A taxonomy of clutter reduction for information visualisation. IEEE Trans Vis Comput Graph 13(6): 1216–1223. doi: 10.1109/TVCG.2007.70535 PubMedCrossRefGoogle Scholar
  5. 5.
    Gagvani N, Silver D (1999) Parameter-controlled volume thinning. CVGIP Graph Model Image Process 61(3): 149–164CrossRefGoogle Scholar
  6. 6.
    Heimann T, Meinzer HP (2009) Statistical shape models for 3D medical image segmentation: a review. Med Image Anal 13(4): 543–563. doi: 10.1016/j.media.2009.05.004 PubMedCrossRefGoogle Scholar
  7. 7.
    Huang X, Paragios N, Metaxas DN (2006) Shape registration in implicit spaces using information theory and free form deformations. IEEE Trans Pattern Anal Mach Intell 28(8): 1303–1318. doi: 10.1109/TPAMI.2006.171 PubMedCrossRefGoogle Scholar
  8. 8.
    Hussain M, Eakins JP (2007) Component-based visual clustering using the self-organizing map. Neural Netw Off J Int Neural Netw Soc 20(2): 260–273. doi: 10.1016/j.neunet.2006.10.004 CrossRefGoogle Scholar
  9. 9.
    Joshi SH, Horn JDV, Toga AW (2009) Interactive exploration of neuroanatomical meta-spaces. Front Neuroinform 3: 38. doi: 10.3389/neuro.11.038.2009 PubMedCrossRefGoogle Scholar
  10. 10.
    Keefe DF, Ewert M, Ribarsky W, Chang R (2009) Interactive coordinated multiple-view visualization of biomechanical motion data. IEEE Trans Vis Comput Graph 15(6): 1383–1390. doi: 10.1109/TVCG.2009.152 PubMedCrossRefGoogle Scholar
  11. 11.
    Kuhn HW (1955) The Hungarian method for the assignment problem. Nav Res Logist Q 2(1–2): 83–97. doi: 10.1002/nav.3800020109 CrossRefGoogle Scholar
  12. 12.
    Latecki LJ, Li Qn, Bai X, Liu Wy (2007) Skeletonization using SSM of the distance transform. IEEE. doi: 10.1109/ICIP.2007.4379837
  13. 13.
    Mahfouz M, Badawi A, Merkl B, Fatah EEA, Pritchard E, Kesler K, Moore M, Jantz R, Jantz L (2007) Patella sex determination by 3D statistical shape models and nonlinear classifiers. Forensic Sci Int 173(2–3): 161–170. doi: 10.1016/j.forsciint.2007.02.024 PubMedCrossRefGoogle Scholar
  14. 14.
    Masuda T (2002) Registration and integration of multiple range images by matching signed distance fields for object shape modeling. Comput Vis Image Underst 87(1–3): 51–65. doi: 10.1006/cviu.2002.0982 CrossRefGoogle Scholar
  15. 15.
    Sanchez-Cruz H, Bribiesca E (2003) A method of optimum transformation of 3D objects used as a measure of shape dissimilarity. Image Vis Comput 21(12): 1027–1036. doi: 10.1016/S0262-8856(03)00119-7 CrossRefGoogle Scholar
  16. 16.
    Trutschl M, Grinstein G, Cvek U (2003) Intelligently resolving point occlusion. In: IEEE symposium on information Visualization, pp 131–136. IEEE. doi: 10.1109/INFVIS.2003.1249018
  17. 17.
    Tufte ER (1990) Envisioning information. Graphics Press, CheshireGoogle Scholar
  18. 18.
    Wan D, Wiet GJ, Welling DB, Kerwin T, Stredney D (2010) Creating a cross-institutional grading scale for temporal bone dissection. Laryngoscope 120(7): 1422–1427. doi: 10.1002/lary.20957 PubMedCrossRefGoogle Scholar
  19. 19.
    Woodring J, Shen HW (2006) Multi-variate, time-varying, and comparative visualization with contextual cues. IEEE Trans Vis Comput Graph 12(5): 909–916. doi: 10.1109/TVCG.2006.164 PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang H, Fritts J, Goldman S (2008) Image segmentation evaluation: a survey of unsupervised methods. Comput Vis Image Underst 110(2): 260–280. doi: 10.1016/j.cviu.2007.08.003 CrossRefGoogle Scholar

Copyright information

© CARS 2012

Authors and Affiliations

  • Thomas Kerwin
    • 1
    Email author
  • Don Stredney
    • 1
  • Gregory Wiet
    • 2
    • 3
  • Han-Wei Shen
    • 4
  1. 1.Ohio Supercomputer CenterColumbusUSA
  2. 2.Nationwide Children’s HospitalColumbusUSA
  3. 3.The Ohio State University Medical CenterColumbusUSA
  4. 4.Department of Computer Science and EngineeringOhio State UniversityColumbusUSA

Personalised recommendations