Advertisement

Computer-aided simple triage (CAST) for coronary CT angiography (CCTA)

  • Roman GoldenbergEmail author
  • Dov Eilot
  • Grigory Begelman
  • Eugene Walach
  • Eyal Ben-Ishai
  • Nathan Peled
Original Article

Abstract

Purpose

Following a recent introduction of computer-aided simple triage (CAST) as a new subclass of computer-aided detection/diagnosis (CAD), we present a CAST software system for a fully automatic initial interpretation of coronary CT angiography (CCTA). We show how the system design and diagnostic performance make it CAST-compliant and suitable for chest pain patient triage in emergency room (ER).

Methods

The processing performed by the system consists of three major steps: segmentation of coronary artery tree, labeling of major coronary arteries, and detection of significant stenotic lesions (causing > 50% stenosis). In addition, the system performs an automatic image quality assessment to discards low-quality studies. For multiphase studies, the system automatically chooses the best phase for each coronary artery. Clinical evaluation results were collected in 14 independent trials that included more than 2000 CCTA studies. Automatic diagnosis results were compared with human interpretation of the CCTA and to cath lab results.

Results

The presented system performs a fully automatic initial interpretation of CCTA without any human interaction and detects studies with significant coronary artery disease. The system demonstrated higher than 90% per patient sensitivity and 40–70% per patient specificity. For the chest pain, ER population, the specificity was 60–70%, yielding higher than 98% NPV.

Conclusions

The diagnostic performance of the presented CCTA CAD system meets the CAST requirements, thus enabling efficient, 24/7 utilization of CCTA for chest pain patient triage in ER. This is the first fully operational, clinically validated, CAST-compliant CAD system for a fully automatic analysis of CCTA and detection of significant stenosis.

Keywords

Computer-aided detection/diagnosis Computer-aided simple triage Emergency diagnostic imaging Coronary CTA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goldenberg R, Peled N (2011) Computer aided simple triage. Int J Comput Assist Radiol Surg 6(5): 705–711PubMedCrossRefGoogle Scholar
  2. 2.
    Gallagher M et al (2007) The diagnostic accuracy of 64-Slice computed tomography coronary angiography compared with stress nuclear imaging in emergency department low-risk chest pain patients. Ann Emerg Med 49(2): 125–136PubMedCrossRefGoogle Scholar
  3. 3.
    Hulten E, Carbonaro S, Petrillo S, Mitchell J, Villines T (2011) Prognostic value of cardiac computed tomography angiography: a systematic review and meta-analysis. J Am Coll Cardiol 57: 1237–1247PubMedCrossRefGoogle Scholar
  4. 4.
    Goldstein J, Gallagher M, O’Neill W, Ross M, O’Neil B, Raff G (2007) A randomized controlled trial of multi-slice coronary computed tomography for evaluation of acute chest pain. J Am Coll Cardiol 49: 863–871PubMedCrossRefGoogle Scholar
  5. 5.
    Anderson J, Adams C, Antman E et al (2007) ACC/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-Elevation myocardial infarction: a report of the American college of cardiology. J Am Coll Cardiol 50(7): e1–e157PubMedCrossRefGoogle Scholar
  6. 6.
    Hendel R, Patel M, Kramer C et al (2006) ACCF/ACR/SCCT/ SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American college of cardiology foundation quality strategic directions committee. J Am Coll Cardiol 48(7): 1475–1497PubMedCrossRefGoogle Scholar
  7. 7.
    Duda RO, Hart PE (1972) Use of the Hough transform to detect lines and curves in pictures. Commun ACM 15(1): 11–15CrossRefGoogle Scholar
  8. 8.
    Hough V, Paul C (1962) Methods and means for recognizing complex patterns. U.S. Patent 3069654Google Scholar
  9. 9.
    Goldenberg R, Kimmel R, Rivlin E, Rudzsky M (2001) Fast geodesic active contours. IEEE Trans Image Proces 10(10): 1467–1475CrossRefGoogle Scholar
  10. 10.
    Laguitton S, Grady L, Lesage D, Funka-lea G (2008) Automatic coronary tree modeling. Blood Vessel Midas J. http://hdl.handle.net/10380/1426
  11. 11.
    Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering. In: MICCAI’98, Cambridge, MAGoogle Scholar
  12. 12.
    Lucas E (1882) Récréations mathématiques, vol I. Gauthier-Villars et fils, Imprimeurs-Libraires, ParisGoogle Scholar
  13. 13.
    Begelman G, Goldenberg R, Levanon S, Ohayon S, Walach E (2011) Creating a blood vessel tree from imaging data. United States Patent 7,983,459Google Scholar
  14. 14.
    Kirbas C, Quek FKH (2004) A review of vessel extraction techniques and algorithms. ACM Comput Surv 36(2): 81–121CrossRefGoogle Scholar
  15. 15.
    Lesage D, Angelini ED, Bloch I, Funka-Lea G (2009) A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med Image Anal 13(6): 819–845PubMedCrossRefGoogle Scholar
  16. 16.
    Zhang X, Collins S, Sonka M (1995) Tree pruning strategy in automated detection of coronary trees in cineangiograms. In: International conference on image processing, WashingtonGoogle Scholar
  17. 17.
    Kelm B, Mittal S, Zheng Y, Tsymbal A, Bernhardt D, Vega-Higuera F, Zhou S, Meer P, Comaniciu D (2011) Detection, grading and classification of coronary stenoses in computed tomography angiography. In: MICCAI’11, TorontoGoogle Scholar
  18. 18.
    Yang G, et al (2011) Automatic labeling of coronary artery tree in CCTA. In: Computing in cardiology, HangzhouGoogle Scholar
  19. 19.
    Kanitsar A, Fleischmann D, Wegenkittl R, Gröller ME (2005) Diagnostic relevant visualization of vascular structures. In: Scientific visualization: the visual extraction of knowledge from data. Springer, pp 207–228Google Scholar
  20. 20.
    Xu C, Prince JL (1998) Snakes, shapes, and gradient vector flow. IEEE Trans Image Proces 7(3): 359–369CrossRefGoogle Scholar
  21. 21.
    Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Proces 10(2): 266–277CrossRefGoogle Scholar
  22. 22.
    Begelman G, Goldenberg R, Levanon S, Ohayon S, Walach E (2011) Method and system for automatic analysis of blood vessel structures to identify calcium or soft plaque pathologies. United States Patent 7,940,977Google Scholar
  23. 23.
    Zadeh L (1965) Fuzzy sets. Inf Control 8(3): 338–353CrossRefGoogle Scholar
  24. 24.
    Dey D, Schepis T, Marwan M, Slomka P, Berman D, Achenbach S (2010) Automated three-dimensional quantification of noncalcified coronary plaque from coronary CT angiography: comparison with intravascular US. Radiology 257(2): 516–522PubMedCrossRefGoogle Scholar
  25. 25.
    Wang Y, Liatsis P (2009) A fully automated framework for segmentation and stenosis quantification of coronary arteries in 3D CTA imaging. In: Second International Conference on Developments in eSystems Engineering Abu DhabiGoogle Scholar
  26. 26.
    Cline HE, Krishnan K, Napel S, Rubin GD, Turner WD, Avila RS (2009) Automated coronary CT angiography plaque-lumen segmentation. Proc SPIE Med Imaging 7260: 726003–72600310Google Scholar
  27. 27.
    Boogers MJ et al (2010) Automated quantification of stenosis severity on 64-slice CT: a comparison with quantitative coronary angiography. JACC Cardiovasc imaging 3(7): 699–709PubMedCrossRefGoogle Scholar
  28. 28.
    Rinck D, Kruger S, Reimann A, Scheuering M (2006) Shape-based segmentation and visualization techniques for evaluation of atherosclerotic plaques in coronary artery disease. Proc SPIE Int Soc Opt Eng 6141: 61410G–61410G-9Google Scholar
  29. 29.
    Levanon S, Goldenberg R, Levy M (2011) Method and system for automatic quality control used in computerized analysis of CT angiography. United States Patent 7,940,970Google Scholar
  30. 30.
    Weisman J, Yuz M (2008) Fully automated coronary CTA analysis. In: SCCT’08, OrlandoGoogle Scholar
  31. 31.
    Lopez C, Weissman G, Joshi S, Weigold W (2008) Automatic computerized evaluation of 64 multislice coronary CTA. A comparison between COR Analyzer II software and visual evaluation. In: SCCT’08, OrlandoGoogle Scholar
  32. 32.
    Poon M (2009) The role of computed aided diagnosis in the management of acute chest pain. In: SCCT’09, OrlandoGoogle Scholar
  33. 33.
    Malhotra V (2009) COR analyzer diagnostic performance analysis. In: SCCT’09, OrlandoGoogle Scholar
  34. 34.
    Tyagi G, et al (2009) Segmental accuracy of an automated analyzer of coronary CT angiography (CCTA) in ED patients: (initial experience). In: RSNA’09, ChicagoGoogle Scholar
  35. 35.
    Arnoldi E, Gebregziabher M, Schoepf U, Goldenberg R, Ramos-Duran L, Zwerner P, Nikolaou K, Reiser M, Costello P, Thilo C (2010) Automated computer-aided stenosis detection at coronary CT angiography: initial experience. Eur Radiol 20(5): 1160–1167PubMedCrossRefGoogle Scholar
  36. 36.
    Daubert M, Malhotra V, Ferraro S, Goldenberg R, Kam M, Wu H, Kam D, Minton A, Poon M (2010) Computer-aided analysis of 64-slice coronary computed tomography angiography: a comparison with manual interpretation. In: SCCT’10, Las VegasGoogle Scholar
  37. 37.
    Malhotra V, Poon M, Krishnan U, Mcnerthney M, Goldenberg R, WN (2010) Computer aided detection for coronary CT angiography in low to intermediate risk population. In: SCCT’10, Las VegasGoogle Scholar
  38. 38.
    Mehta C, et al (2010) Validation of an automated cardiac CT angiography analysis system: initial experience at an academic center. In: SCCT’10, Las VegasGoogle Scholar
  39. 39.
    Anders K, Petit I, Achenbach S, Pflederer T (2010) Diagnostic utility of automated stenosis detection in dual source CT coronary angiography as a stand alone or add-on tool. In: SCCT’10, Las VegasGoogle Scholar
  40. 40.
    Halpern E, Halpern D (2010) Diagnosis of coronary stenosis with CT angiography: comparison of automated computer diagnosis with expert readings. Acad Radiol 18(3): 324–333CrossRefGoogle Scholar
  41. 41.
    Henzler T, Meyer M, Apfaltrer P, Schönberg S, Fink C (2012) Computed-aided stenosis detection on coronary CT angiography in chest pain patients with an intermediate pre-test likelihood for acute coronary syndrome. In: ECR’12, ViennaGoogle Scholar
  42. 42.
    Kang K, Chang H, Shim H, Kim Y, Choi B, Yang W, Shim J, Ha J, Chung N (2012) Feasibility of an automatic computer-assisted algorithm for the detection of significant coronary artery disease in patients presenting with acute chest pain. Eur J Radiol 81(4): e640–e646PubMedCrossRefGoogle Scholar
  43. 43.
    Schaap M, Metz C et al (2009) Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms. Med Image Anal 13(5): 701–714PubMedCrossRefGoogle Scholar
  44. 44.
    Rotterdam Coronary Artery Algorithm Evaluation Framework, Biomedical Imaging Group Rotterdam, [Online]. Available: http://coronary.bigr.nl/centerlines/results/results.php
  45. 45.
    Sansoni E, Schoepf U, Nance J, Barraza J, Henzler T, Deml K (2010) Computer aided detection of coronary artery disease in the CT-based triage of acute chest pain patients—validation by patient outcome. In: RSNA’10, ChicagoGoogle Scholar

Copyright information

© CARS 2012

Authors and Affiliations

  • Roman Goldenberg
    • 1
    Email author
  • Dov Eilot
    • 1
  • Grigory Begelman
    • 1
  • Eugene Walach
    • 1
    • 2
  • Eyal Ben-Ishai
    • 1
  • Nathan Peled
    • 3
  1. 1.Rcadia Medical ImagingHaifaIsrael
  2. 2.IBM Research Haifa LabHaifaIsrael
  3. 3.Department of RadiologyLady Davis Carmel Medical CenterHaifaIsrael

Personalised recommendations