Advertisement

Segmentation of iodine brachytherapy implants in fluoroscopy

  • Eric Moult
  • Gabor Fichtinger
  • W. James Morris
  • Septimiu E. Salcudean
  • Ehsan Dehghan
  • Pascal FallavollitaEmail author
Original Article

Abstract

Purpose

In prostate brachytherapy, intraoperative dosimetry would allow for evaluation of the implant quality while the patient is still in treatment position. Such a mechanism, however, requires 3-D visualization of the deposited seeds relative to the prostate. It follows that accurate and robust seed segmentation is of critical importance in achieving intraoperative dosimetry.

Methods

Implanted iodine brachytherapy seeds are segmented via a region-based implicit active contour model. Overlapping seed groups are then resolved using a template-based declustering technique.

Results

Ground truth seed coordinates were obtained through manual segmentation. A total of 57 clinical C-arm images from 10 patients were used to validate the proposed algorithm. This resulted in two failed images and a 96.0% automatic detection rate with a corresponding 2.2% false-positive rate in the remaining 55 images. The mean centroid error between the manual and automatic segmentations was 1.2 pixels.

Conclusions

Robust and accurate iodine seed segmentation can be achieved through the proposed segmentation workflow.

Keywords

Prostate brachytherapy Iodine implants Active contours Segmentation Seed declustering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chan TF, Vese LA: Active contours without edges. IEEE Trans Image Process 10(2), 266–277 (2001)PubMedCrossRefGoogle Scholar
  2. 2.
    Dehghan E, Jain A, Moradi M, Wen X, Morris WJ, Fichtinger G, Salcudean SE: Brachytherapy seed reconstruction with joint-encoded C-arm single-axis rotation and motion compensation. Med Image Anal 15(5), 760–771 (2011)PubMedCrossRefGoogle Scholar
  3. 3.
    Hoskin P, Coyle C: Radiotherapy in Practice—Brachytherapy. Radiotherapy in Practice Series. Oxford University Press, Oxford (2011)Google Scholar
  4. 4.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin 61(2), 69–90 (2011)PubMedCrossRefGoogle Scholar
  5. 5.
    Kirsch RA: Computer determination of the constituent structure of biological images. Comp Biomed Res 4, 315–328 (1971)CrossRefGoogle Scholar
  6. 6.
    Kuo N, Deguet A, Song DY, Burdette EC, Prince JL, Lee J: Automatic segmentation of radiographic fiducial and seeds from X-ray images in prostate brachytherapy. Med Eng Phys 34(1), 64–77 (2012)PubMedCrossRefGoogle Scholar
  7. 7.
    Lam S, Marks RJ, Cho PS: Prostate brachytherapy seed segmentation using spoke transform. SPIE 4322, 1490–1500 (2001)CrossRefGoogle Scholar
  8. 8.
    Lee J, Labat C, Jain AK, Song DY, Burdette EC, Fichtinger G, Prince JL: REDMAPS: reduced-dimensionality matching for prostate brachytherapy seed reconstruction. IEEE Trans Med Image 30(1), 38–51 (2011)CrossRefGoogle Scholar
  9. 9.
    Li C, Xu C, Gui C, Fox MD: Level set evolution without re-initialization: a new variational formulation. CVPR 1, 430–436 (2005)Google Scholar
  10. 10.
    Li C, Kao C, Gore JC, Ding Z: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans Image Process 17(10), 1940–1949 (2008)PubMedCrossRefGoogle Scholar
  11. 11.
    Nag S, Ciezki JP, Cormack R, Doggett S, DeWyngaert K, Edmundson GK, Stock RG, Stone NN, Yu Y, Zelefsky M: Intraoperative planning and evaluation of permanent prostate brachytherapy: report of the American Brachytherapy Society. Int J Radiat Oncol Biol Phys 51(5), 1422 (2001)PubMedCrossRefGoogle Scholar
  12. 12.
    Osher S, Sethian JA: Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79(1), 12–49 (1988)CrossRefGoogle Scholar
  13. 13.
    Su Y, Davis BJ, Herman M, Manduca A, Robb R: Examination of dosimetry accuracy as a function of seed detection rate in permanent prostate brachytherapy. Med Phys 32, 3049–3056 (2001)CrossRefGoogle Scholar
  14. 14.
    Tubic D, Zaccarin A, Beaulieu L, Pouliot J: Automated seed detection and three-dimensional reconstruction. I. seed localization from fluoroscopic images or radiographs. Med Phys 28(11), 2272–2279 (2001)PubMedCrossRefGoogle Scholar
  15. 15.
    Weeratunga SK, Kamath C: Investigation of implicit active contours for scientific image segmentation. VCIP 5308(1), 210–221 (2004)Google Scholar

Copyright information

© CARS 2012

Authors and Affiliations

  • Eric Moult
    • 1
  • Gabor Fichtinger
    • 1
  • W. James Morris
    • 2
  • Septimiu E. Salcudean
    • 3
  • Ehsan Dehghan
    • 4
  • Pascal Fallavollita
    • 5
    Email author
  1. 1.Queen’s UniversityKingstonCanada
  2. 2.Vancouver Cancer CentreVancouverCanada
  3. 3.University of British ColumbiaVancouverCanada
  4. 4.Johns Hopkins UniversityBaltimoreUSA
  5. 5.Technische Universität MünchenMunichGermany

Personalised recommendations