Advertisement

Hand-assisted positioning and contact pressure control for motion compensated robotized transcranial magnetic stimulation

  • Lars Richter
  • Ralf Bruder
  • Achim Schweikard
Original Article

Abstract

Purpose

In Transcranial Magnetic Stimulation (TMS), the principle of magnetic induction is used to stimulate the brain non-invasively. Currently, robotic TMS systems are developed to guarantee precise coil placement on the head and in this way achieve the repeatability of stimulation results. However, usability concerns such as the complicated coil positioning are still unsolved for motion compensated robotized TMS. In this paper, we demonstrate the integration of a force-torque control into a robotic TMS system to improve usability, safety, and precision.

Methods

We integrated a force-torque sensor between robot effector and TMS coil. Coil calibration and gravity compensation have been developed. Based on them, we have implemented hand-assisted positioning for easy and fast coil placement. Furthermore, we have enhanced the existing motion compensation algorithms with a contact pressure control.

Results

The positioning time for an experienced user decreased up to 40% with the help of hand-assisted positioning in comparison with not hand-assisted robotized positioning. It also enabled an inexperienced user to use the system safely.

Conclusion

Integration of a force-torque control into the motion compensated robotized TMS system greatly enhances system’s usability, which is a prerequisite for integration in the clinical workflow and clinical acceptance.

Keywords

Transcranial magnetic stimulation Robotized TMS Force control Motion compensation Medical robotics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albu-Schäffer A, Haddadin S, Ott C, Stemmer A, Wimböck T, Hirzinger G (2007) The dlr lightweight robot—design and control concepts for robots in human environments. Ind Robot 34(5): 376–385CrossRefGoogle Scholar
  2. 2.
    Awiszus F (2003) Tms and threshold hunting. Suppl Clin Neurophysiol 56: 13–23PubMedCrossRefGoogle Scholar
  3. 3.
    Chronicle EP, Pearson AJ, Matthews C (2005) Development and positioning reliability of a tms coil holder for headache research. Headache: J Head Face Pain 45(1): 37–41. doi: 10.1111/j.1526-4610.2005.05008.x CrossRefGoogle Scholar
  4. 4.
    Ernst F, Richter L, Matthäus L, Martens V, Bruder R, Schlaefer A, Schweikard A (2012) Non-orthogonal tool/flange and robot/world calibration for realistic tracking scenarios. Int J Med Robot Comput Assist Surg p (accepted for publication)Google Scholar
  5. 5.
    Lancaster JL, Narayana S, Wenzel D, Luckemeyer J, Roby J, Fox P (2004) Evaluation of an image-guided, robotically positioned transcranial magnetic stimulation system. Hum Brain Mapp 22(4): 329–340. doi: 10.1002/hbm.20041 PubMedCrossRefGoogle Scholar
  6. 6.
    Langguth B, De Ridder D, Dornhoffer JL, Eichhammer P, Folmer RL, Frank E, Fregni F, Gerloff C, Khedr E, Kleinjung T, Landgrebe M, Lee S, Lefaucheur JP, Londero A, Marcondes R, Moller AR, Pascual-Leone A, Plewnia C, Rossi S, Sanchez T, Sand P, Schlee W, Steffens T, Van de Heyning P, Hajak G (2008) Controversy: does repetitive transcranial magnetic stimulation/ transcranial direct current stimulation show efficacy in treating tinnitus patients?. Brain Stimul 1: 192–205PubMedCrossRefGoogle Scholar
  7. 7.
    Langguth B, Kleinjung T, Landgrebe M, Ridder DD, Hajak G (2010) rTMS for the treatment of tinnitus: the role of neuronavigation for coil positioning. Neurophysiologie Clinique (Clin Neurophysiol) 40(1): 45–58. doi: 10.1016/j.neucli.2009.03.001 CrossRefGoogle Scholar
  8. 8.
    Lebossé C, Renaud P, Bayle B, de Mathelin M (2011) Modeling and evaluation of low-cost force sensors. IEEE Trans Robot 27(4): 815–822. doi: 10.1109/tro.2011.2119850 CrossRefGoogle Scholar
  9. 9.
    Lebossé C, Renaud P, Bayle B, de Mathelin M, Piccin O, Foucher J (2007) A robotic system for automated image-guided transcranial magnetic stimulation. In: Life science systems and applications workshop, 2007. LISA 2007. IEEE/NIH, pp 55–58. doi: 10.1109/lssa.2007.4400883
  10. 10.
    Londero A, Langguth B, Ridder DD, Bonfils P, Lefaucheur JP (2006) Repetitive transcranial magnetic stimulation (rtms): a new therapeutic approach in subjective tinnitus?. Neurophysiologie Clinique (Clin Neurophysiol) 36(3):145–155 doi: 10.1016/j.neucli.2006.08.001. http://www.sciencedirect.com/science/article/pii/S0987705306000736
  11. 11.
    Matthäus L (2008) A robotic assistance system for transcranial magnetic stimulation and its application to motor cortex mapping. Ph.D. thesis, Universität zu LübeckGoogle Scholar
  12. 12.
    Matthäus L, Giese A, Wertheimer D, Schweikard A (2006) Planning and analyzing robotized tms using virtual reality. Stud Health Technol Inf 119: 373–378Google Scholar
  13. 13.
    Noirhomme Q, Ferrant M, Vandermeeren Y, Olivier E, Macq B, Cuisenaire O (2004) Registration and real-time visualization of transcranial magnetic stimulation with 3-d mr images. IEEE Trans Biomed Eng 51(11): 1994–2005. doi: 10.1109/tbme.2004.834266 PubMedCrossRefGoogle Scholar
  14. 14.
    Pascual-Leone A, Davey, NJ, Rothwell, JC, Wassermann, EM Puri, BK (eds) (2002) Handbook of transcranial magnetic stimulation. Arnold, AmsterdamGoogle Scholar
  15. 15.
    Renaud P, Piccin O, Lebossé C, Laroche E, de Mathelin M, Bayle B, Foucher J (2006) Robotic image-guided transcranial magnetic stimulation. In: Computer assisted radiology and surgery (CARS), 20th international congress, Osaka, JapanGoogle Scholar
  16. 16.
    Richter L, Bruder R, Schlaefer A (2010) Proper force-torque sensor system for robotized TMS: Automatic coil calibration. In: Proceedings of CARS’10, international journal of computer assisted radiology and surgery, vol 5. CARS, Geneva, pp S422–S423Google Scholar
  17. 17.
    Richter L, Bruder R, Schlaefer A, Schweikard A (2011) Realisierung einer schnellen und wiederholbaren hot-spot-bestimmung für die robotergestützte transkranielle magnet-stimulation mittels kraft-momenten-steuerung. In: CURAC. Magdeburg, pp 31–34Google Scholar
  18. 18.
    Richter L, Matthäus L, Schlaefer A, Schweikard A (2010) Fast robotic compensation of spontaneous head motion during transcranial magnetic stimulation (TMS). In: UKACC international conference on CONTROL 2010, vol 8. Coventry, UK, pp 872–877Google Scholar
  19. 19.
    Ruohonen J, Karhu J (2010) Navigated transcranial magnetic stimulation. Neurophysiologie Clinique (Clin Neurophysiol) 40(1):7–17. doi: 10.1016/j.neucli.2010.01.006. http://www.sciencedirect.com/science/article/B6VMP-4YDY7T0-1/2/ec0b0959b36b904e5eda9cb42c3a1759
  20. 20.
    Wassermann, EM, Epstein, CM, Ziemann, U, Walsh, V, Paus, T, Lisanby, SH (eds) (2008) The Oxford handbook of transcranial magnetic stimulation. Oxford University Press, OxfordGoogle Scholar
  21. 21.
    Zorn L, Renaud P, Bayle B, Goffin L, Lebossé C, de Mathelin M, Foucher J (2011) Design and evaluation of a robotic system for transcranial magnetic stimulation. IEEE Trans Biomed Eng 99: 1. doi: 10.1109/tbme.2011.2179938 Google Scholar

Copyright information

© CARS 2012

Authors and Affiliations

  1. 1.Institute for Robotics and Cognitive SystemsUniversity of LübeckLübeckGermany
  2. 2.Graduate School for Computing in Medicine and Life SciencesUniversity of LübeckLübeckGermany

Personalised recommendations