Calibration of the motor-assisted robotic stereotaxy system: MARS

  • Maximilian Heinig
  • Ulrich G. Hofmann
  • Alexander Schlaefer
Original Article

Abstract

Background

The motor-assisted robotic stereotaxy system presents a compact and light-weight robotic system for stereotactic neurosurgery. Our system is designed to position probes in the human brain for various applications, for example, deep brain stimulation. It features five fully automated axes. High positioning accuracy is of utmost importance in robotic neurosurgery.

Methods

First, the key parameters of the robot’s kinematics are determined using an optical tracking system. Next, the positioning errors at the center of the arc—which is equivalent to the target position in stereotactic interventions—are investigated using a set of perpendicular cameras. A modeless robot calibration method is introduced and evaluated. To conclude, the application accuracy of the robot is studied in a phantom trial.

Results

We identified the bending of the arc under load as the robot’s main error source. A calibration algorithm was implemented to compensate for the deflection of the robot’s arc. The mean error after the calibration was 0.26 mm, the 68.27th percentile was 0.32 mm, and the 95.45th was 0.50 mm.

Conclusion

The kinematic properties of the robot were measured, and based on the results an appropriate calibration method was derived. With mean errors smaller than currently used mechanical systems, our results show that the robot’s accuracy is appropriate for stereotactic interventions.

Keywords

Stereotactic neurosurgery Robot calibration Isocenter Robotic surgery Deep brain stimulation (DBS) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ostertag C, Mennel H, Kiessling M (1980) Stereotactic biopsy of brain tumors. Surg Neurol 14(4): 275PubMedGoogle Scholar
  2. 2.
    Ondo W, Jankovic J, Schwartz K, Almaguer M, Simpson R (1998) Unilateral thalamic deep brain stimulation for refractory essential tremor and Parkinson’s disease tremor. Neurology 51(4): 1063PubMedCrossRefGoogle Scholar
  3. 3.
    Loddenkemper T, Pan A, Neme S, Baker K, Rezai A, Dinner D, Montgomery E Jr, Lueders H (2001) Deep brain stimulation in epilepsy. J Clin Neurophysiol 18(6): 514PubMedCrossRefGoogle Scholar
  4. 4.
    Richardson D, Akil H (1977) Pain reduction by electrical brain stimulation in man. J Neurosurg 47(2): 184–194PubMedCrossRefGoogle Scholar
  5. 5.
    Rasche D, Rinaldi P, Young R, Tronnier V (2006) Deep brain stimulation for the treatment of various chronic pain syndromes. Neurosurg Focus 21(6): E8PubMedCrossRefGoogle Scholar
  6. 6.
    Allan L, Petit G, Brundin P (2010) Cell transplantation in Parkinson’s disease: problems and perspectives. Curr Opin Neurol 23(4): 426PubMedGoogle Scholar
  7. 7.
    Martinez H, Gonzalez-Garza M, Moreno-Cuevas J, Caro E, Gutierrez-Jimenez E, Segura J (2009) Stem-cell transplantation into the frontal motor cortex in amyotrophic lateral sclerosis patients. Cytotherapy 11(1): 26–34PubMedCrossRefGoogle Scholar
  8. 8.
    Bronstein J, Tagliati M, Alterman R, Lozano A, Volkmann J, Stefani A, Horak F, Okun M, Foote K, Krack P et al (2010) Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch Neurol (online)Google Scholar
  9. 9.
    Schulder M (ed) (2003) Handbook of stereotactic and functional neurosurgery. Informa HealthcareGoogle Scholar
  10. 10.
    Medtronic: Nexframe stereotactic system manual. Tech. rep., Medtronic Inc Minneapolis USA (2010). URL http://professional.medtronic.com/
  11. 11.
    Bjartmarz H, Rehncrona S (2007) Comparison of accuracy and precision between frame-based and frameless stereotactic navigation for deep brain stimulation electrode implantation. Stereotact Funct Neurosurg 85: 235–242PubMedCrossRefGoogle Scholar
  12. 12.
    Lanfranco A, Castellanos A, Desai J, Meyers W (2004) Robotic surgery: a current perspective. Ann Surg 239(1): 14PubMedCrossRefGoogle Scholar
  13. 13.
    Kwoh YS, Hou J, Jonckheere E, Hayati S (1988) A robot with improved absolute positioning accuracy for ct guided stereotactic brain surgery. Biomed Eng IEEE Trans 35(2): 153–160CrossRefGoogle Scholar
  14. 14.
    Benabid A, Cinquin P, Lavalle S, Le Bas J, Demongeot J, De Rougemont J (1987) Computer-driven robot for stereotactic surgery connected to CT scan and magnetic resonance imaging. Stereotact Funct Neurosurg 50(1–6): 153–154CrossRefGoogle Scholar
  15. 15.
    Drake JM, Joy M, Goldenberg A, Kreindler D (1991) Computer-and robot-assisted resection of thalamic astrocytomas in children. Neurosurgery 29(1): 27PubMedCrossRefGoogle Scholar
  16. 16.
    Morgan PS, Carter T, Davis S, Sepehri A, Punt J, Byrne P, Moody A, Finlay P (2003) The application accuracy of the pathfinder neurosurgical robot. In: International congress series CARS 2003. Computer assisted radiology and surgery. Proceedings of the 17th international congress and exhibition, pp 561–567Google Scholar
  17. 17.
    Li QH, Zamorano L, Pandya A, Perez R, Gong J, Diaz F (2002) The application accuracy of the neuromate robot quantitative comparison with frameless and frame-based surgical localization systems. Comput Aided Surg 7(2): 90–98PubMedGoogle Scholar
  18. 18.
    Medtech: Rosa neurosurgery robot. Tech. rep., Medtech SAS Montpellier France (2011). URL http://www.medtechsurgical.com/Products/ROSA
  19. 19.
    Karas C, Chiocca A (2007) Neurosurgical robotics: a review of brain and spine applications. J Robot Surg 1(1): 39–43CrossRefGoogle Scholar
  20. 20.
    Craig JJ (2005) Introduction to robotics, mechanics and control. Pearson Prentice Hall, NJ, p 07458Google Scholar
  21. 21.
    Heinig M, Govela MF, Gasca F, Dold C, Hofmann UG, Tronnier V, Schlaefer A, Schweikard A (2011) Mars—motor assisted robotic stereotaxy system. In: Proceedings of the 5th international IEEE EMBS conference on neural engineering, pp 334–337Google Scholar
  22. 22.
    Kotsianos D, Wirth S, Fischer T, Euler E, Rock C, Linsenmaier U, Pfeifer KJ, Reiser M (2004) 3d imaging with an isocentric mobile c-arm. Eur Radiol 14: 1590–1595PubMedCrossRefGoogle Scholar
  23. 23.
    Neitzel M, Mitschang P, Beresheim G (2004) Handbuch Verbundwerkstoffe: Werkstoffe, Verarbeitung, Anwendung. Hanser, MunichGoogle Scholar
  24. 24.
    atracsys: Accutrack 250. Accessed 29 Aug 2011 (2011). URL http://atracsys.com/products/trackingsystems.php
  25. 25.
    Mooring B, Driels M, Roth Z (1991) Fundamentals of manipulator calibration. Wiley, New YorkGoogle Scholar
  26. 26.
    Bai Y (2007) On the comparison of model-based and modeless robotic calibration based on a fuzzy interpolation method. Int J Adv Manuf Technol 31: 1243–1250CrossRefGoogle Scholar
  27. 27.
    Lilliefors H (1969) On the Kolmogorov-Smirnov test for the exponential distribution with mean unknown. J Am Stat Assoc 64: 387–389CrossRefGoogle Scholar
  28. 28.
    Eljamel MS (2007) Validation of the pathfinder neurosurgical robot using a phantom. Int J Med Robot Comput Assisted Surg 3(4): 372–377. doi:10.1002/rcs.153 CrossRefGoogle Scholar
  29. 29.
    Rachinger J, Bumm K, Wurm J, Bohr C, Nissen U, Dannenmann T, Buchfelder M, Iro H, Nimsky C (2007) A new mechatronic assistance system for the neurosurgical operating theatre: Implementation, assessment of accuracy and application concepts. Stereotact Funct Neurosurg 85(5): 249–255PubMedCrossRefGoogle Scholar
  30. 30.
    Henderson JM, Holloway KL, Gaede SE, Rosenow JM (2004) The application accuracy of a skull-mounted trajectory guide system for image-guided functional neurosurgery. Comput Aided Surg 9(4): 155–160PubMedGoogle Scholar

Copyright information

© CARS 2012

Authors and Affiliations

  • Maximilian Heinig
    • 1
  • Ulrich G. Hofmann
    • 2
  • Alexander Schlaefer
    • 1
  1. 1.Institute for Robotics and Cognitive SystemsUniversity of LübeckLübeckGermany
  2. 2.Institute for Signal ProcessingUniversity of LübeckLübeckGermany

Personalised recommendations