Automated segmentation of basal ganglia and deep brain structures in MRI of Parkinson’s disease

  • Claire Haegelen
  • Pierrick Coupé
  • Vladimir Fonov
  • Nicolas Guizard
  • Pierre Jannin
  • Xavier Morandi
  • D. Louis Collins
Original Article

Abstract

Purpose

Template-based segmentation techniques have been developed to facilitate the accurate targeting of deep brain structures in patients with movement disorders. Three template-based brain MRI segmentation techniques were compared to determine the best strategy for segmenting the deep brain structures of patients with Parkinson’s disease.

Methods

T1-weighted and T2-weighted magnetic resonance (MR) image templates were created by averaging MR images of 57 patients with Parkinson’s disease. Twenty-four deep brain structures were manually segmented on the templates. To validate the template-based segmentation, 14 of the 24 deep brain structures from the templates were manually segmented on 10 MR scans of Parkinson’s patients as a gold standard. We compared the manual segmentations with three methods of automated segmentation: two registration-based approaches, automatic nonlinear image matching and anatomical labeling (ANIMAL) and symmetric image normalization (SyN), and one patch-label fusion technique. The automated labels were then compared with the manual labels using a Dice-kappa metric and center of gravity. A Friedman test was used to compare the Dice-kappa values and paired t tests for the center of gravity.

Results

The Friedman test showed a significant difference between the three methods for both thalami (p < 0.05) and not for the subthalamic nuclei. Registration with ANIMAL was better than with SyN for the left thalamus and was better than the patch-based method for the right thalamus.

Conclusion

Although template-based approaches are the most used techniques to segment basal ganglia by warping onto MR images, we found that the patch-based method provided similar results and was less time-consuming. Patch-based method may be preferable for the subthalamic nucleus segmentation in patients with Parkinson’s disease.

Keywords

Basal ganglia MRI template Patch-based method Parkinson’s disease Segmentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benabid AL, Chabardes S, Mitrofanis J, Pollak P (2009) Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol 8: 67–81PubMedCrossRefGoogle Scholar
  2. 2.
    Koller W, Pahwa R, Lyons K, Wilkinson S (2000) Deep brain stimulation of the Vim nucleus of the thalamus for the treatment of tremor. Neurology 55: S29–S33PubMedGoogle Scholar
  3. 3.
    Vayssiere N, Hemm S, Zanca M, Picot MC, Bonafe A, Cif L, Frerebeau P, Coubes P (2000) Magnetic resonance imaging stereotactic target localization for deep brain stimulation in dystonic children. J Neurosurg 93: 784–790PubMedCrossRefGoogle Scholar
  4. 4.
    Parsons TD, Rogers SA, Braayen AJ, Woods SP, Troster AI (2006) Cognitive sequelae of subthalamic nucleus deep brain stimulation in Parkinson’s disease: a meta-analysis. Lancet Neurol 5: 578–588PubMedCrossRefGoogle Scholar
  5. 5.
    York MK, Wilde EA, Simpson R, Jankovic J (2009) Relationship between neuropsychological outcome and DBS surgical trajectory and electrode location. J Neurol Sci 287: 159–171PubMedCrossRefGoogle Scholar
  6. 6.
    Bardinet E, Bhattacharjee M, Dormont D, Pidoux B, Malandain G, Schüpbach M, Ayache N, Cornu P, Agid Y, Yelnik J (2009) A three-dimensional histological atlas of the human basal ganglia. II. Atlas deformation strategy and evaluation in deep brain stimulation for Parkinson disease. J Neurosurg 110: 208–219PubMedCrossRefGoogle Scholar
  7. 7.
    Chakravarty MM, Bertrand G, Hodge CP, Sadikot AF, Collins DL (2006) The creation of a brain atlas for image guided neurosurgery using serial histological data. Neuroimage 30: 359–376PubMedCrossRefGoogle Scholar
  8. 8.
    Lalys F, Haegelen C, Ferre JC, El-Ganaoui O, Jannin P (2010) Construction and assessment of a 3T-MRI brain template. Neuroimage 49: 345–354PubMedCrossRefGoogle Scholar
  9. 9.
    Schaltenbrand G, Wahren W (1977) Atlas for stereotaxy of the human brain. Thieme, StuttgartGoogle Scholar
  10. 10.
    Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Georg Thieme Verlag, StuttgartGoogle Scholar
  11. 11.
    Yelnik J, Bardinet E, Dormont D, Malandain G, Ourselin S, Tandé D, Karachi K, Ayache N, Cornu P, Agid Y (2007) A three-dimensional, histological and deformable atlas of the human basal ganglia. I. Atlas construction based on immunohistochemical and MRI data. Neuroimage 34: 618–638PubMedCrossRefGoogle Scholar
  12. 12.
    D’Haese PF, Pallavaram S, Li R, Remple MS, Kao C, Neimat JS, Konrad PE, Dawant BM (2010) CranialVault and its CRAVE tools: a clinical computer assistance system for deep brain stimulation (DBS) therapy. Med Image Anal. doi:10.1016/j.media.2010.07.009
  13. 13.
    Guo T, Finnis KW, Parrent AG, Peters TM (2006) Visualization and navigation system development and application for stereotactic deep-brain neurosurgeries. Comput Aided Surg 11: 231–239PubMedGoogle Scholar
  14. 14.
    Guo T, Parrent AG, Peters TM (2007) Surgical targeting accuracy analysis of six methods for subthalamic nucleus deep brain stimulation. Comput Aided Surg 12: 325–334PubMedGoogle Scholar
  15. 15.
    Collins DL, Holmes CJ, Peters T, Evans AC (1995) Automatic 3-D model based neuroanatomical segmentation. Hum Brain Mapp 3: 190–208CrossRefGoogle Scholar
  16. 16.
    Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL, BrainDevelopment Cooperative Group (2011) Unbiased average age-appropriate atlases for pediatric studies. Neuroimage 54: 313–327PubMedCrossRefGoogle Scholar
  17. 17.
    Avants BB, Epstein CL, Grossman M, Gee JC (2008) Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 12(1): 26–41PubMedCrossRefGoogle Scholar
  18. 18.
    Coupé P, Manjon JV, Fonov V, Pruessner J, Robles M, Collins DL (2011) Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. Neuroimage 54: 940–954PubMedCrossRefGoogle Scholar
  19. 19.
    Neelin P (1998) The MINC file format:from bytes to brains. NeuroImage 7(4): 786Google Scholar
  20. 20.
    Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17: 87–97PubMedCrossRefGoogle Scholar
  21. 21.
    Nyul LG, Udupa JK, Saha PK (2003) Incorporating a measure of local scale in voxel-based 3-D image registration. IEEE Trans Med Imaging 22: 228–237PubMedCrossRefGoogle Scholar
  22. 22.
    Wells WM III, Viola P, Atsumi H, Nakajima S, Kikinis R (1994) Multi-modal volume registration by maximization of mutual information. Med Image Anal 1(1): 35–51CrossRefGoogle Scholar
  23. 23.
    Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18: 192–205PubMedCrossRefGoogle Scholar
  24. 24.
    Smith SM (1998) Fast robust automated brain extraction. Hum Brain Mapp 17: 143–155CrossRefGoogle Scholar
  25. 25.
    Mai JK, Paxinos G, Voss T (2008) Atlas of the human brain. Elsevier Inc, AmsterdamGoogle Scholar
  26. 26.
    Coupé P, Yger P, Prima S, Hellier P, Kervrann C, Barillot C (2008) An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans Med Imaging 27: 425–441PubMedCrossRefGoogle Scholar
  27. 27.
    Zijdenbos AP, Dawant BM, Margolin RA, Palmer AC (1994) Morphometric analysis of white matter lesions in MR images: method and validation. IEEE Trans Imaging 13: 716–724CrossRefGoogle Scholar
  28. 28.
    Dice L (1945) Measure of the amount of ecological association between species. Ecology 26(3): 297–302CrossRefGoogle Scholar
  29. 29.
    Hu S, Coupe P, Pruessner JC, Collins DL (2011) Appearance-based modeling for segmentation of hippocampus and amygdala using multi-contrast MR imaging. Neuroimage 58: 549–559PubMedCrossRefGoogle Scholar
  30. 30.
    Bhattachargee M, Pitiot A, Roche A, Dormont D, Bardinet E (2008) Anatomy-preserving nonlinear registration of deep brain ROIs using confidence-based block-matching. In: LNCS MICCAI, part II, Springer, vol 5242, pp 956–963. doi:10.1007/978-3-540-85990-1_115
  31. 31.
    Bardinet E, Dormont D, Malandain G, Bhattachargee M, Pidoux B, Saleh C, Cornu P, Ayache N, Agid Y, Yelnik J (2005) Retrospective cross-evaluation of an histological and deformable 3D atlas of the basal ganglia on series of Parkinsonian patients treated by deep brain stimulation. In: LNCS MICCAI, Springer, vol 3750, pp 385–393. doi:10.11007/11566489_48
  32. 32.
    Chakravarty MM, Sadikot AF, Germann J, Hellier P, Bertrand G, Collins DL (2009) Comparison of piece-wise linear, linear, and nonlinear atlas-to-patient warping techniques: analysis of the labelling of subcortical nuclei for functional neurosurgical applications. Hum Brain Mapp 30: 3574–3595PubMedCrossRefGoogle Scholar
  33. 33.
    Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang MC, Christensen GE, Collins DL, Gee J, Hellier P, Song JH, Jenkinson M, Lepage C, Rueckert D, Thompson P, Vercauteren T, Woods RP, Mann JJ, Parsey RV (2009) Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 46: 786–802PubMedCrossRefGoogle Scholar
  34. 34.
    Collins DL, Pruessner JC (2010) Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion. Neuroimage 52: 1355–1366PubMedCrossRefGoogle Scholar
  35. 35.
    Aljabar P, Heckeman RA, Hammers A, Hajnal JV, Rueckert D (2009) Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. Neuroimage 46: 726–738PubMedCrossRefGoogle Scholar
  36. 36.
    Patenaude B, Smith SM, Kennedy DN, Jenkinson M (2011) A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 56: 907–922PubMedCrossRefGoogle Scholar
  37. 37.
    Antonini A, Isaias IU, Rodolfi G, Landi A, Natuzzi F, Siri C, Pezzoli G (2011) A 5-year prospective assessment of advanced Parkinson disease patients treated with subcutaneous apomor- phine infusion or deep brain stimulation. J Neurol 258: 579–585. doi:10.1007/s00415-010-5793-z PubMedCrossRefGoogle Scholar
  38. 38.
    Merola A, Zibettu M, Angrisano S, Rizzi L, Lanotte M, Lopiano L (2011) Comparison of subthalamic nucleus deep brain stimulation and duodopa in the treatment of advanced Parkinson’s disease. Mov Disord 26(4): 664–670PubMedCrossRefGoogle Scholar

Copyright information

© CARS 2012

Authors and Affiliations

  • Claire Haegelen
    • 1
    • 2
    • 3
    • 4
    • 5
  • Pierrick Coupé
    • 1
    • 6
  • Vladimir Fonov
    • 1
  • Nicolas Guizard
    • 1
  • Pierre Jannin
    • 2
    • 3
    • 4
  • Xavier Morandi
    • 2
    • 3
    • 4
  • D. Louis Collins
    • 1
  1. 1.McConnell Brain Imaging CentreMontreal Neurological InstituteMontrealCanada
  2. 2.Faculty of Medicine, U746INSERMRennes CedexFrance
  3. 3.VisAGeS Unit/ProjectINRIARennes CedexFrance
  4. 4.UMR 06074, IRISACNRS, University of Rennes 1Rennes CedexFrance
  5. 5.Service de NeurochirurgieHôpital PontchaillouRennes Cedex 9France
  6. 6.LaBRI CNRS, UMR 5800University of BordeauxTalence CedexFrance

Personalised recommendations