Voxel classification and graph cuts for automated segmentation of pathological periprosthetic hip anatomy

  • Daniel F. Malan
  • Charl P. Botha
  • Edward R. Valstar
Open Access
Original Article

Abstract

Purpose

Automated patient-specific image-based segmentation of tissues surrounding aseptically loose hip prostheses is desired. For this we present an automated segmentation pipeline that labels periprosthetic tissues in computed tomography (CT). The intended application of this pipeline is in pre-operative planning.

Methods

Individual voxels were classified based on a set of automatically extracted image features. Minimum-cost graph cuts were computed on the classification results. The graph-cut step enabled us to enforce geometrical containment constraints, such as cortical bone sheathing the femur’s interior. The solution’s novelty lies in the combination of voxel classification with multilabel graph cuts and in the way label costs were defined to enforce containment constraints.

Results

The segmentation pipeline was tested on a set of twelve manually segmented clinical CT volumes. The distribution of healthy tissue and bone cement was automatically determined with sensitivities greater than 82% and pathological fibrous interface tissue with a sensitivity exceeding 73%. Specificity exceeded 96% for all tissues.

Conclusions

The addition of a graph-cut step improved segmentation compared to voxel classification alone. The pipeline described in this paper represents a practical approach to segmenting multitissue regions from CT.

Keywords

Segmentation Graph cut Voxel classification Osteolysis Computed tomography 

References

  1. 1.
    Agarwal S (2004) Osteolysis—basic science, incidence and diagnosis. Curr Orthop 18: 220–231. doi:10.1016/j.cuor.2004.03.002 CrossRefGoogle Scholar
  2. 2.
    de Poorter JJ, Hoeben RC, Hogendoorn S, Mautner V, Ellis J, Obermann WR, Huizinga TWJ (2008) Gene therapy and cement injection for restabilization of loosened hip prostheses. Hum Gene Ther 19: 83–95. doi:10.1089/hum.2007.111 PubMedCrossRefGoogle Scholar
  3. 3.
    Raaijmaakers M, Mulier M (2010) Percutaneous in situ cementation of a loose femoral stem. J Arthroplast 25:1169.e21–1169.e24. doi:10.1016/j.arth.2009.03.027
  4. 4.
    Cody DD, Gross GJ, Hou J, Spencer HJ, Goldstein SA, Fyhrie DP (1999) Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech 32: 1013–1020. doi:10.1016/S0021-9290(99)00099-8 PubMedCrossRefGoogle Scholar
  5. 5.
    Schileo E, Taddei F, Malandrino A, Cristofolini L, Viceconti M (2007) Subject-specific finite element models can accurately predict strain levels in long bones. J Biomech 40: 2982–2989. doi:10.1016/j.jbiomech.2007.02.010 PubMedCrossRefGoogle Scholar
  6. 6.
    Garcia-Cimbrelo E, Tapia M, Martin-Hervas C (2007) Multislice computed tomography for evaluating acetabular defects in revision THA. Clin Orthop Relat Res 463: 138–143. doi:10.1097/BLO.0b013e3181566320 PubMedGoogle Scholar
  7. 7.
    Walde TA, Weiland DE, Leung SB, Kitamura N, Sychterz CJ, Engh CA, Claus AM, Potter HG (2005) Comparison of CT, MRI, and radiographs in assessing pelvic osteolysis: a cadaveric study. Clin Orthop Relat Res 437: 138–144. doi:10.1097/01.blo.0000164028.14504.46 PubMedCrossRefGoogle Scholar
  8. 8.
    Cahir JG, Toms AP, Marshall TJ, Wimhurst J (2007) CT and MRI of hip arthroplasty. Clin Radiol 62: 1163–1171. doi:10.1016/j.crad.2007.04.018 PubMedCrossRefGoogle Scholar
  9. 9.
    Watzke O, Kalender W (2004) A pragmatic approach to metal artifact reduction in CT: merging of metal artifact reduced images. Eur Radiol 14: 849–856. doi:10.1007/s00330-004-2263-y PubMedCrossRefGoogle Scholar
  10. 10.
    Liu P, Pavlicek W, Peter M, Spangehl M, Roberts C, Paden R (2009) Metal artifact reduction image reconstruction algorithm for CT of implanted metal orthopedic devices: a work in progress. Skeletal Radiol 38: 797–802. doi:10.1007/s00256-008-0630-5 PubMedCrossRefGoogle Scholar
  11. 11.
    Zoroofi RA, Sato Y, Sasama T, Nishii T, Sugano N, Yonenobu K, Yoshikawa H, Ochi T, Tamura S (2003) Automated segmentation of acetabulum and femoral head from 3-D CT images. IEEE Trans Inf Technol Biomed 7: 329–343. doi:10.1109/TITB.2003.813791 PubMedCrossRefGoogle Scholar
  12. 12.
    Kang Y, Engelke K, Kalender WA (2003) A new accurate and precise 3-D segmentation method for skeletal structures in volumetric CT data. IEEE Trans Med Imaging 22: 586–598. doi:10.1109/TMI.2003.812265 PubMedCrossRefGoogle Scholar
  13. 13.
    Yokota F, Okada T, Takao M, Sugano N, Tada Y, Sato Y (2009) Automated segmentation of the femur and pelvis from 3D CT data of diseased hip using hierarchical statistical shape model of joint structure. Med Image Comput Comput Assist Interv 12: 811–818. doi:10.1007/978-3-642-04271-3_98 PubMedGoogle Scholar
  14. 14.
    Shlens J (2005) A tutorial on principal component analysis. Systems Neurobiology Laboratory, Salk Institute for Biological Studies. http://www.snl.salk.edu/~shlens/pca.pdf. Accessed 16 Nov 2011
  15. 15.
    Sharma N, Aggarwal LM (2010) Automated medical image segmentation techniques. J Med Phys 35: 3–14. doi:10.4103/0971-6203.58777 PubMedCrossRefGoogle Scholar
  16. 16.
    Malan DF, Botha CP, Nelissen RGHH, Valstar ER (2010) Voxel classification of periprosthetic tissues in clinical computed tomography of loosened hip prostheses. In: Proceedings of the IEEE international symposium on biomedical imaging: from nano to macro, Rotterdam, The Netherlands, pp 1341–1344Google Scholar
  17. 17.
    Boykov Y, Veksler O, Zabih R (2001) Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell 23: 1222–1239. doi:10.1109/34.969114 CrossRefGoogle Scholar
  18. 18.
    Delong A, Boykov Y (2009) Globally optimal segmentation of multi-region objects. In: Proceedings of the IEEE 12th international computer vision conference, Kyoto, Japan, pp 285–292Google Scholar
  19. 19.
    Veksler O (2010) Code: multi-label optimization. University of Western Ontario. http://vision.csd.uwo.ca/code/. Accessed 22 Sept 2010
  20. 20.
    Maleike D, Nolden M, Meinzer HP (2009) Interactive segmentation framework of the medical imaging interaction toolkit. Comput Methods Programs Biomed 96: 72–83. doi:10.1016/j.cmpb.2009.04.004 PubMedCrossRefGoogle Scholar
  21. 21.
    van der Lijn F, den Heijer T, Breteler MMB (2008) Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts. Neuroimage 43: 708–720. doi:10.1016/j.neuroimage.2008.07.058 PubMedCrossRefGoogle Scholar
  22. 22.
    Zou KH, Warfield SK, Bharatha A, Tempany CMC, Kaus MR, Haker SJ, Wells WM, Jolesz FA, Kikinis R (2004) Statistical validation of image segmentation quality based on a spatial overlap index. Acad Radiol 11: 178–189. doi:10.1016/S1076-6332(03)00671-8 PubMedCrossRefGoogle Scholar
  23. 23.
    Kalender WA, Hebel R (1987) Reduction of CT artifacts caused by metallic implants. Radiology 164: 576–577PubMedGoogle Scholar
  24. 24.
    Botha CP (2008) Hybrid scheduling in the DeVIDE dataflow visualisation environment. In: Hauser H, Strassburger S, Theisel H (eds) Proceedings of simulation and visualization, pp 309–322Google Scholar
  25. 25.
    Loog M, van Ginneken B (2006) Segmentation of the posterior ribs in chest radiographs using iterated contextual pixel classification. IEEE Trans Med Imaging 25: 602–611. doi:10.1109/TMI.2006.872747 PubMedCrossRefGoogle Scholar
  26. 26.
    Folkesson J, Dam EB, Olsen OF, Pettersen PC (2007) Segmenting articular cartilage automatically using a voxel classification approach. IEEE Trans Med Imaging 26: 106–115PubMedCrossRefGoogle Scholar
  27. 27.
    van Rikxoort EM, de Hoop B, van de Vorst S, Prokop M (2009) Automatic segmentation of pulmonary segments from volumetric chest CT scans. IEEE Trans Med Imaging 28: 621–630. doi:10.1109/TMI.2008.2008968 PubMedCrossRefGoogle Scholar
  28. 28.
    Paclik P, Lai C (2011) PRSD Studio. PR Sys Design, Delft, The Netherlands. http://www.prsdstudio.com/. Accessed 16 Nov 2011
  29. 29.
    Greig DM, Porteous BT (1989) Exact maximum a posteriori estimation for binary images. J R Stat Soc Ser B Stat Methodol 51: 271–279Google Scholar
  30. 30.
    Ahuja RK, Magnanti TL, Orlin JB (1993) Maximum flows: polynomial algorithms. In: Janzow P, Peterson M (eds) Network flows. Prentice Hall, Englewood Cliffs, New Jersey, p 240Google Scholar
  31. 31.
    Boykov Y, Kolmogorov V (2004) An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans Pattern Anal Mach Intell 26: 1124–1137. doi:10.1109/TPAMI.2004.60 PubMedCrossRefGoogle Scholar
  32. 32.
    Kolmogorov V, Zabin R (2004) What energy functions can be minimized via graph cuts?. IEEE Trans Pattern Anal Mach Intell 26: 147–159. doi:10.1109/TPAMI.2004.1262177 PubMedCrossRefGoogle Scholar
  33. 33.
    Egger J, Colen RR, Freisleben B, Nimsky C (2011) Manual refinement system for graph-based segmentation results in the medical domain. J Med Syst. doi:10.1007/s10916-011-9761-7
  34. 34.
    Schwarz EM, Campbell D, Totterman S, Boyd A, O’Keefe RJ (2003) Use of volumetric computerized tomography as a primary outcome measure to evaluate drug efficacy in the prevention of peri-prosthetic osteolysis: a 1-year clinical pilot of etanercept vs. placebo. J Orthop Res 21: 1049–1055. doi:10.1016/S0736-0266(03)00093-7 PubMedCrossRefGoogle Scholar
  35. 35.
    Malan DF, Botha CP, Kraaij G, Joemai RM, van der Heide HJL, Nelissen RGHH, Valstar ER (2011) Measuring femoral lesions despite CT metal artefacts: a cadaveric study. Skeletal Radiol. doi:10.1007/s00256-011-1223-2

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Daniel F. Malan
    • 1
    • 2
  • Charl P. Botha
    • 2
    • 3
  • Edward R. Valstar
    • 1
    • 4
  1. 1.Department of OrthopaedicsLeiden University Medical CenterLeidenThe Netherlands
  2. 2.Department of Mediamatics, EEMCSDelft University of TechnologyDelftThe Netherlands
  3. 3.Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
  4. 4.Department of Biomechanical EngineeringDelft University of TechnologyDelftThe Netherlands

Personalised recommendations