Advertisement

Comprehensive visualization of multimodal cardiac imaging data for assessment of coronary artery disease: first clinical results of the SMARTVis tool

  • Hortense A. Kirişli
  • V. Gupta
  • S. W. Kirschbaum
  • A. Rossi
  • C. T. Metz
  • M. Schaap
  • R. J. van Geuns
  • N. Mollet
  • B. P. F. Lelieveldt
  • J. H. C. Reiber
  • T. van Walsum
  • W. J. Niessen
Original Article

Abstract

Purpose

In clinical practice, both coronary anatomy and myocardial perfusion information are needed to assess coronary artery disease (CAD). The extent and severity of coronary stenoses can be determined using computed tomography coronary angiography (CTCA); the presence and amount of ischemia can be identified using myocardial perfusion imaging, such as perfusion magnetic resonance imaging (PMR). To determine which specific stenosis is associated with which ischemic region, experts use assumptions on coronary perfusion territories. Due to the high variability between patient’s coronary artery anatomies, as well as the uncertain relation between perfusion territories and supplying coronary arteries, patient-specific systems are needed.

Material and methods

We present a patient-specific visualization system, called Synchronized Multimodal heART Visualization (SMARTVis), for relating coronary stenoses and perfusion deficits derived from CTCA and PMR, respectively. The system consists of the following comprehensive components: (1) two or three-dimensional fusion of anatomical and functional information, (2) automatic detection and ranking of coronary stenoses, (3) estimation of patient-specific coronary perfusion territories.

Results

The potential benefits of the SMARTVis tool in assessing CAD were investigated through a case-study evaluation (conventional vs. SMARTVis tool): two experts analyzed four cases of patients with suspected multivessel coronary artery disease. When using the SMARTVis tool, a more reliable estimation of the relation between perfusion deficits and stenoses led to a more accurate diagnosis, as well as a better interobserver diagnosis agreement.

Conclusion

The SMARTVis comprehensive visualization system can be effectively used to assess disease status in multivessel CAD patients, offering valuable new options for the diagnosis and management of these patients.

Keywords

Computed tomography coronary angiography (CTCA) Perfusion magnetic resonance imaging (PMR) Coronary artery disease (CAD) Diagnosis Therapy planning Evaluation 

List of abbreviations

BEP

Bull’s eye plot

CAD

Coronary artery disease

CTCA

Computed tomography coronary angiography

CPR

Curved-planar reformatted

FFR

Fractional flow reserve

ICA

Invasive coronary angiography

ICP

Iterative closest point

LAD

Left anterior descending artery

LCX

Left circumflex artery

MPR

Multi-planar reformatted

MPRI

Myocardial perfusion reserve index

PMR

Perfusion magnetic resonance imaging

RCA

Right coronary artery

SMARTVis

Synchronized multimodal heart visualization

TIC

Time-intensity curve

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, Go A, Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott MM, Meigs J, Mozaffarian D, Mussolino M, Nichol G, Roger VL, Rosamond W, Sacco R, Sorlie P, Roger VL, Thom T, Wasserthiel-Smoller S, Wong ND, Wylie-Rosett J, A.H.A. S. Committee and S.S. Subcommittee, Heart disease and stroke statistics-2010 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circul 121(12):e46–e215Google Scholar
  2. 2.
    Weustink A, de Feyter P (2011) The role of multi-slice computed tomography in stable angina management—a current perspective. Neth Heart J, in press. doi: 10.1007/s12471-011-0096-2
  3. 3.
    Kirschbaum S, Springeling T, Rossi A, Duckers E, GutiTrrez-Chico J, Regar E, de Feyter P, van Geuns R (2011) Comparison of adenosine magnetic resonance perfusion imaging with invasive coronary flow reserve and fractional flow reserve in patients with suspected coronary artery disease. Int J Cardiol 147: 184– 186PubMedCrossRefGoogle Scholar
  4. 4.
    Kirschbaum S, van Geuns R (2011) Cardiac magnetic resonance imaging to detect and evaluate ischemic heart disease. Hell J Cardiol 50: 119–126Google Scholar
  5. 5.
    AHA: (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation 105: 539–542PubMedCrossRefGoogle Scholar
  6. 6.
    Pereztol-Valdés O, Candell-Riera J, Santana-Boado C, Angel J, Aguadé-Bruix S, Castell-Conesa J, Garcia E, Soler-Soler J (2005) Correspondence between left ventricular 17 myocardial segments and coronary arteries. Eur Heart J 26(24): 637–643CrossRefGoogle Scholar
  7. 7.
    Termeer M, Bescós J, Breeuwer M, Vilanova A, Gerritsen F, Gröller M (2007) Covicad: comprehensive visualization of coronary artery disease. IEEE Trans Vis Comput Graph 13(6): 1632–1641PubMedCrossRefGoogle Scholar
  8. 8.
    Faber T, Santana C, Garcia E, Candell-Riera J, Folks R, Peifer J, Hopper A, Aguade S, Angel J, Klein J (2004) Three-dimensional fusion of coronary arteries with myocardial perfusion distributions: clinical validation. J Nucl Med 45(5): 745–753PubMedGoogle Scholar
  9. 9.
    Gaemperli O, Schepis T, Kalff V, Namdar M, Valenta I, Stefani L, Desbiolles L, Leschka S, Husmann L, Alkadhi H, Kaufmann P (2007) Validation of a new cardiac image fusion software for three-dimensional integration of myocardial perfusion SPECT and stand-alone 64-slice CT angiography. Eur J Nucl Med Mol Imaging 34: 1097–1106PubMedCrossRefGoogle Scholar
  10. 10.
    van Werkhoven J, Schuijf J, Gaemperli O, Jukema J, Boersma E, Wijns W, Stolzmann P, Alkadhi H, Valenta I, Stokkel M, Kroft L, de Roos A, Pundziute G, Scholte A, van der Wall E, Kaufmann P, Bax J (2009) Computed tomography and gated single-photon emission computed tomography in patients with suspected coronary artery disease. J Am Coll Cardiol 53: 623–632PubMedCrossRefGoogle Scholar
  11. 11.
    Scholte A, Roos C, van Werkhoven J (2010) Function and anatomy: SPECT-MPI and MSCT coronary angiography. EuroIntervention 6(G): 94–100Google Scholar
  12. 12.
    Termeer M, Bescós J, Breeuwer M, Vilanova A, Gerritsen F, Gröller M, Nagel E (2008) Visualization of myocardial perfusion derived from coronary anatomy. IEEE Trans Vis Comput Graph 14(6): 1595–1602PubMedCrossRefGoogle Scholar
  13. 13.
    Kühnel C, Hennemuth A, Oeltze S, Boskamp T, Peitgen H (2008) Enhanced cardio vascular image analysis by combined representation of results from dynamic MRI and anatomic CTA. In: Proceedings of SPIE medical imaging, vol 6918Google Scholar
  14. 14.
    Kühnel C, Hennemuth A, Peitgen H, Mahnken A (2008) New analysis tools for the comprehensive assessment of the coronary arteries and myocardial viability in CT data sets. Proc Comput Cardiol 35: 733–736Google Scholar
  15. 15.
    Kirişli H, Gupta V, Kirschbaum S, Neefjes L, van Geuns R, Mollet N, Lelieveldt B, Reiber J, van Walsum T, Niessen W (2011) A patient-specific visualization tool for comprehensive analysis of coronary CTA and perfusion MRI data. In: Proceedings of SPIE medical imagingGoogle Scholar
  16. 16.
    Metz C, Schaap M, Weustink A, Mollet N, van Walsum T, Niessen W (2009) Coronary centerline extraction from CT coronary angiography images using a minimum cost path approach. Med Phys 36(12): 5568–5579PubMedCrossRefGoogle Scholar
  17. 17.
    Schaap M, van Walsum T, Neefjes L, Metz C, Capuano E, de Bruijne M, Niessen W (2011) Robust shape regression for supervised vessel segmentation and its application to coronary segmentation in CTA. IEEE Trans Med Imaging, in pressGoogle Scholar
  18. 18.
    Kirişli H, Schaap M, Klein S, Papadopoulou S, Bonardi M, Chen C, Weustink A, Mollet N, Vonken EPA, van der Geest R, van Walsum T, Niessen W (2010) Evaluation of a multi-atlas based method for segmentation of cardiac CTA data: a large-scale, multi-center and multi-vendor study. Med Phys 37(12): 6279–6292. doi: 10.1118/1.3512795 PubMedCrossRefGoogle Scholar
  19. 19.
    Milles J, der Geest R, Jerosch-Herold M, Reiber J, Lelieveldt B (2008) Fully automated motion correction in first-pass myocardial perfusion mr image sequences. IEEE Trans Med Imaging 27(11): 1611–1621PubMedCrossRefGoogle Scholar
  20. 20.
    Gupta V, Hendriks E, Milles J, van der Geest R, Jerosch-Herold M, Reiber J, Lelieveldt B (2010) Fully automatic registration and segmentation of first-pass myocardial perfusion mr image sequences. Acad Radiol 17(11): 1375–1385PubMedCrossRefGoogle Scholar
  21. 21.
    Debruyne M, Hubert M, Suykens J (2008) Model selection in kernel based regression using the influence function. J Mach Learn Res 9: 2377–2400Google Scholar
  22. 22.
    Beliveau P, Setser R, Cheriet F, White R, O’Donnell T (2007) Computation of coronary perfusion territories from CT angiography. Proc Comput Cardiol 34: 753–756Google Scholar
  23. 23.
    Yin RK (2009) Case study research: design and methods. 4th edn. SAGE Publications, Beverly Hills, CAGoogle Scholar

Copyright information

© CARS 2011

Authors and Affiliations

  • Hortense A. Kirişli
    • 1
    • 2
  • V. Gupta
    • 2
    • 3
  • S. W. Kirschbaum
    • 4
  • A. Rossi
    • 4
  • C. T. Metz
    • 1
  • M. Schaap
    • 1
  • R. J. van Geuns
    • 4
  • N. Mollet
    • 4
  • B. P. F. Lelieveldt
    • 2
    • 3
  • J. H. C. Reiber
    • 2
  • T. van Walsum
    • 1
  • W. J. Niessen
    • 1
  1. 1.Biomedical Imaging Group Rotterdam (BIGR)Erasmus Medical Center RotterdamRotterdamThe Netherlands
  2. 2.Division of Image ProcessingLeiden University Medical CenterLeidenThe Netherlands
  3. 3.ICT Group, Department of MediamaticsDelft University of TechnologyDelftThe Netherlands
  4. 4.Department of Radiology and CardiologyErasmus Medical Center RotterdamRotterdamThe Netherlands

Personalised recommendations