Decomposition and analysis of laparoscopic suturing task using tool-motion analysis (TMA): improving the objective assessment

  • J. B. Pagador
  • F. M. Sánchez-Margallo
  • L. F. Sánchez-Peralta
  • J. A. Sánchez-Margallo
  • J. L. Moyano-Cuevas
  • S. Enciso-Sanz
  • J. Usón-Gargallo
  • J. Moreno
Original Article

Abstract

Purpose

The laparoscopic suturing task is a complex procedure that requires objective assessment of surgical skills. Analysis of laparoscopic suturing task components was performed to improve current objective assessment tools.

Methods

Twelve subjects participated in this study as three groups of four surgeons (novices, intermediates and experts). A box-trainer and organic tissue were used to perform the experiment while tool movements were recorded with the augmented reality haptic system. All subjects were right-handed and developed a surgeon’s knot. The laparoscopic suturing procedure was decomposed into four subtasks. Different objective metrics were applied during tool-motion analysis (TMA). Statistical analysis was performed, and results from three groups were compared using the Jonckheere–Terpstra test, considering significant differences when P ≤ 0.05.

Results

Several first, second and fourth subtask metrics had significant differences between the three groups. Subtasks 1 and 2 had more significant differences in metrics than subtask 4. Almost all metrics showed superior task executions accomplished by experts (lower time, total path length and number of movements) compared with intermediates and novices.

Conclusion

The most important subtasks during suture learning process are needle puncture and first knot. The TMA could be a useful objective assessment tool to discriminate surgical experience and could be used in the future to measure and certify surgical proficiency.

Keywords

Laparoscopic suturing Objective assessment Tool-motion analysis TMA Augmented reality haptic ARH Minimally invasive surgery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buunen M, Gholghesaei M, Veldkamp R, Meijer DW, Bonjer HJ, Bouvy ND (2004) Stress response to laparoscopic surgery—a review. Surg Endosc 18(7): 1022–1028PubMedCrossRefGoogle Scholar
  2. 2.
    Beldi G, Ipaktchi R, Wagner M, Gloor B, Candinas D (2006) Laparoscopic ventral hernia repair is safe and cost effective. Surg Endosc 20(1): 92–95PubMedCrossRefGoogle Scholar
  3. 3.
    Delaney CP, Chang E, Senagore AJ, Broder M (2008) Clinical outcomes and resource utilization associated with laparoscopic and open colectomy using a large national database. Ann Surg 247(5): 819–824PubMedCrossRefGoogle Scholar
  4. 4.
    Usón J, Sánchez FM, Pascual S, Climent S (2007) In: Usón J (ed) Formación en Cirugía Laparoscópica Paso a Paso, 3rd edn. Minimally Invasive Surgery Centre, CáceresGoogle Scholar
  5. 5.
    Fried GM (2008) FLS assessment of competency using simulated laparoscopic task. J Gastrointest Surg 12(2): 210–212PubMedCrossRefGoogle Scholar
  6. 6.
    Schout BM, Hendrikx JM, Scheele F, Bemelmans BLH, Scherpbier JJ (2010) Validation and implementation of surgical simulators: a critical review of present, past, and future. Surg Endosc 24(3): 536–546PubMedCrossRefGoogle Scholar
  7. 7.
    Dhariwal AK, Prabhu RY, Dalvi AN, Supe AN (2007) Effectiveness of box trainers in laparoscopic training. J Minim Access Surg 3(2): 57–63PubMedCrossRefGoogle Scholar
  8. 8.
    Lamata P, Gómez E, Sánchez-Margallo F, López Ó, Monserrat C, García V, Alberola C, Rodríguez Florido M, Ruiz J, Usón J (2007) Sinergia laparoscopic virtual reality simulador: didactic design and technical development. Comput Methods Programs Biomed 85(3): 273–283PubMedCrossRefGoogle Scholar
  9. 9.
    Sánchez-Margallo JA, Sánchez-Margallo FM, Pagador JB, Gómez EJ, Sánchez-González P, Usón J, Moreno J (2011) Video-based assistance system for training in minimally invasive surgery. Minim Invasive Ther Allied Technol 20(4): 197–205PubMedCrossRefGoogle Scholar
  10. 10.
    Munz Y, Kumar BD, Moorthy K, Bann S, Darzi A (2004) Laparoscopic virtual reality and box trainers. Is one superior to the other?. Surg Endosc 18: 485–494PubMedCrossRefGoogle Scholar
  11. 11.
    Botden SM, Jakimowicz JJ (2009) What is going on in augmented reality simulation in laparoscopic surgery?. Surg Endosc 23(8): 1693–1700PubMedCrossRefGoogle Scholar
  12. 12.
    Solis J, Oshima N, Ishii H et al (2008) Towards understanding the suture/ligature skills during the training process using WKS-2RII. Int J Comput Assist Radiol Surg 3(3–4): 231–239CrossRefGoogle Scholar
  13. 13.
    Pagador JB, Uson J, Sánchez MA, Moyano JL, Moreno J, Bustos P, Mateos J, Sánchez-Margallo FM (2011) Electronic device for endosurgical skills training (EDEST): study of reliability. Int J Comput Assist Radiol Surg 6(3): 367–374PubMedCrossRefGoogle Scholar
  14. 14.
    Reiley CE, Lin HC, Yuh DD, Hager GD (2011) Review of methods for objective surgical skill evaluation. Surg Endosc 25(2): 356–366PubMedCrossRefGoogle Scholar
  15. 15.
    Xeroulis G, Dubrowski A, Leslie K (2009) Simulation in laparoscopic surgery: a concurrent validity study for FLS. Surg Endosc 23(1): 161–165PubMedCrossRefGoogle Scholar
  16. 16.
    Datta V, Bann S, Mandalia M, Darzi A (2006) The surgical efficiency score: a feasible, reliable, and valid method of skills assessment. Am J Surg 192(3): 372–378PubMedCrossRefGoogle Scholar
  17. 17.
    Gunther S, Rosen J, Hannaford B, Sinanan M (2007) The red DRAGON: a multi-modality system for simulation and training in minimally invasive surgery. Stud Health Technol Inform 125: 149–154PubMedGoogle Scholar
  18. 18.
    Feng C, Haniffa H, Rozenblit J, Hamilton A, Salkini M (2006) Surgical training and performance assessment using a motion tracking system. Proceedings of European modeling and simulation symposium (EMSS), pp 647–652Google Scholar
  19. 19.
    Yamaguchi S, Yoshida D, Kenmotsu H, Yasunaga T, Konishi K, Ieiri S, Nakashima H, Tanoue K, Hashizume M (2011) Objective assessment of laparoscopic suturing skills using a motion-tracking system. Surg Endosc 25(3): 771–775PubMedCrossRefGoogle Scholar
  20. 20.
    Pagador JB, Sánchez LF, Sánchez JA, Bustos P, Moreno J, Sánchez-Margallo FM (2011) Augmented reality haptic (ARH): an approach of electromagnetic tracking in minimally invasive surgery. Int J Comput Assist Radiol Surg 6(2): 257–263PubMedCrossRefGoogle Scholar
  21. 21.
    Munz Y, Almoudaris AM, Moorthy K et al (2007) Curriculum-based solo virtual reality training for laparoscopic intracorporeal knot tying: objective assessment of the transfer of skill from virtual reality to reality. Am J Surg 193(6): 774–783PubMedCrossRefGoogle Scholar
  22. 22.
    Dosis A, Aggarwal R, Bello F et al (2005) Synchronized video and motion analysis for the assessment of procedures in the operating theater. Arch Surg 140(3): 293–299PubMedCrossRefGoogle Scholar
  23. 23.
    Pagador JB, Sánchez-Margallo FM, Sánchez-Peralta L, Sánchez-Margallo JA, Enciso S, Moreno J (2010) Objective assessment of basic laparoscopic skills using automatic video-based technique. Minim Invasive Ther Allied Technol 19(Suppl1): 55Google Scholar
  24. 24.
    Sheskin D (2007) Handbook of parametric and nonparametric statistical procedures. Chapman & Hall/CRC, LondonGoogle Scholar
  25. 25.
    Reiley CE, Hager GD (2009) Task versus subtask surgical skill evaluation of robotic minimally invasive surgery. Med Image Comput Comput-Assist Interv: MICCAI 12(Pt 1): 435–442PubMedGoogle Scholar
  26. 26.
    Jayaraman S, Trejos AL, Naish MD, Lyle A, Patel RV, Schlachta CM (2011) Toward construct validity for a novel sensorized instrument-based minimally invasive surgery simulation system. Surg Endosc 25(5): 1439–1445PubMedCrossRefGoogle Scholar
  27. 27.
    Darzi a, Smith S, Taffinder N (1999) Assessing operative skill. Needs to become more objective. BMJ 318(7188): 887–888PubMedCrossRefGoogle Scholar
  28. 28.
    McClusky Da, Smith CD (2008) Design and development of a surgical skills simulation curriculum. World J Surg 32(2): 171–181PubMedCrossRefGoogle Scholar
  29. 29.
    Chung J, Sackier J (1998) A method of objectively evaluating improvements in laparoscopic skills. Surg Endosc 12: 1111–1116PubMedCrossRefGoogle Scholar
  30. 30.
    Moorthy K, Munz Y, Dosis A et al (2004) Bimodal assessment of laparoscopic suturing skills: construct and concurrent validity. Surg Endosc 18(11): 1608–1612PubMedGoogle Scholar
  31. 31.
    Chmarra MK, Jansen FW, Grimbergen Ca, Dankelman J (2008) Retracting and seeking movements during laparoscopic goal-oriented movements. Is the shortest path length optimal?. Surg Endosc 22(4): 943–949PubMedCrossRefGoogle Scholar
  32. 32.
    Allen B, Nistor V, Dutson E et al (2010) Support vector machines improve the accuracy of evaluation for the performance of laparoscopic training tasks. Surg Endosc 24(1): 170–178PubMedCrossRefGoogle Scholar
  33. 33.
    Seymour NE (2008) VR to OR: a review of the evidence that virtual reality simulation improves operating room performance. World J Surg 32(2): 182–188PubMedCrossRefGoogle Scholar
  34. 34.
    Elneel FH, Carter F, Tang B, Cuschieri A (2008) Extent of innate dexterity and ambidexterity across handedness and gender: implications for training in laparoscopic surgery. Surg Endosc 22: 31–37PubMedCrossRefGoogle Scholar

Copyright information

© CARS 2011

Authors and Affiliations

  • J. B. Pagador
    • 1
  • F. M. Sánchez-Margallo
    • 3
  • L. F. Sánchez-Peralta
    • 1
  • J. A. Sánchez-Margallo
    • 1
  • J. L. Moyano-Cuevas
    • 1
  • S. Enciso-Sanz
    • 2
  • J. Usón-Gargallo
    • 3
  • J. Moreno
    • 4
  1. 1.Bioengineering and Health Technologies UnitJesús Usón Minimally Invasive Surgery CentreCáceresSpain
  2. 2.Laparoscopic UnitJesús Usón Minimally Invasive Surgery CentreCáceresSpain
  3. 3.DirectionJesús Usón Minimally Invasive Surgery CentreCáceresSpain
  4. 4.Laboratory of Robotics and Artificial VisionUniversity of ExtremaduraCáceresSpain

Personalised recommendations