Advertisement

Robotic system for MRI-guided prostate biopsy: feasibility of teleoperated needle insertion and ex vivo phantom study

  • Reza SeifabadiEmail author
  • Sang-Eun Song
  • Axel Krieger
  • Nathan Bongjoon Cho
  • Junichi Tokuda
  • Gabor Fichtinger
  • Iulian Iordachita
Original Article

Abstract

Purpose

Magnetic Resonance Imaging (MRI) combined with robotic assistance has the potential to improve on clinical outcomes of biopsy and local treatment of prostate cancer.

Methods

We report the workspace optimization and phantom evaluation of a five Degree of Freedom (DOF) parallel pneumatically actuated modular robot for MRI-guided prostate biopsy. To shorten procedure time and consequently increase patient comfort and system accuracy, a prototype of a MRI-compatible master–slave needle driver module using piezo motors was also added to the base robot.

Results

Variable size workspace was achieved using appropriate link length, compared with the previous design. The 5-DOF targeting accuracy demonstrated an average error of 2.5 mm (STD = 1.37 mm) in a realistic phantom inside a 3T magnet with a bevel-tip 18G needle. The average position tracking error of the master–slave needle driver was always below 0.1 mm.

Conclusion

Phantom experiments showed sufficient accuracy for manual prostate biopsy. Also, the implementation of teleoperated needle insertion was feasible and accurate. These two together suggest the feasibility of accurate fully actuated needle placement into prostate while keeping the clinician supervision over the task.

Keywords

Transperineal prostate biopsy MRI compatible Pneumatic robot Teleoperation Accuracy evaluation Phantom study 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    American Cancer Society (2010) Cancer facts and figures 2010. American Cancer Society, AtlantaGoogle Scholar
  2. 2.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer Statistics, 2009. CA: A Cancer Journal for Clinicians, page caac.20006Google Scholar
  3. 3.
    Terris MK, Wallen EM, Stamey TA (1997) Comparison of mid-lobe versus lateral systematic sextant biopsies in detection of prostate cancer. Urol Int 59: 239–242PubMedCrossRefGoogle Scholar
  4. 4.
    Yu KK, Hricak H (2000) Imaging prostate cancer. Radiol Clin North Am 38(1): 59–85PubMedCrossRefGoogle Scholar
  5. 5.
    Chowning SL, Susil RC, Krieger A, Fichtinger G, Whitcomb LL, Atalar E (2006) A preliminary analysis and model of prostate injection distributions. Prostate 66(4): 344–357PubMedCrossRefGoogle Scholar
  6. 6.
    Krieger A, Metzger G, Fichtinger G, Atalar E, Whitcomb LL (2006) A hybrid method for 6-DOF tracking of MRI-compatible robotic interventional devices. In: Proceedings of the IEEE international conference on robotics and automation, vol 2006. Orlando, FL, USA, pp 3844–3849Google Scholar
  7. 7.
    Krieger A, Susil R, Tanacs A, Fichtinger G, Whitcomb L, Atalar E (2002) A mri compatible device for MRI-guided transrectal prostate biopsy. International Society of Magnetic Resonance Imaging in Medicine, Tenth Scientific Meeting, Honolulu, p 338Google Scholar
  8. 8.
    Krieger A, Iulian I, Sang-Eun S, Bongjoon CN, Peter G, Gabor F, Louis W (2010) Development and preliminary evaluation of an actuated MRI-compatible robotic device for MRI-guided prostate intervention. ICRA, AK, USGoogle Scholar
  9. 9.
    Beyersdorff D, Winkel A, Hamm B, Lenk S, Loening SA, Taupitz M (2005) MR imaging-guided prostate biopsy with a closed MR unit at 1.5T: Initial results. Radiology 234(2): 576–581PubMedCrossRefGoogle Scholar
  10. 10.
    Engelhard K, Hollenbach HP, Kiefer B, Winkel A, Goeb K, Engehausen D (2006) Prostate biopsy in the supine position in a standard 1.5- T scanner under real time MR-imaging control using a MR-compatible endorectal biopsy device. Eur Radiol 16(6): 1237–1243PubMedCrossRefGoogle Scholar
  11. 11.
    Elhawary H, Zivanovic A, Rea M, Davies B, Besant C, McRobbie D, de Souza N, Young I, Lamprth M (2006) The feasibility of MR image guided prostate biopsy using piezoceramic motors inside or near to the magnet isocentre. Int Conf Med Image Comput Comput Assist Interv 9(Pt 1):519–526Google Scholar
  12. 12.
    D’Amico AV, Tempany CM, Cormack R, Hata N, Jinzaki M, Tuncali K, Weinstein M, Richie JP (2000) Transperineal magnetic resonance image guided prostate biopsy. J Urol 164(2): 385–387PubMedCrossRefGoogle Scholar
  13. 13.
    Susil R, Camphausen K, Choyke P, McVeigh E, GS GG, Ning H, Miller R, Atalar E, Coleman C, Menard C (2004) System for prostate brachytherapy and biopsy in a standard 1.5T MRI scanner. Magn Reson Med 52(3): 683–687PubMedCrossRefGoogle Scholar
  14. 14.
    Chinzei K, Hata N, Jolesz FA, Kikinis R (2000) MRI-compatible surgical assist robot: system integration and preliminary feasibility study. In: Medical image computing and computer-assisted intervention (MICCAI), vol 1935, pp 921–930Google Scholar
  15. 15.
    DiMaio SP, Pieper S, Chinzei K, Hata N, Haker SJ, Kacher DF, Fichtinger G, Tempany CM, Kikinis R (2007) Robot-assisted needle placement in open MRI: system architecture, integration and validation. Comput Aided Surg 12(1): 15–24PubMedGoogle Scholar
  16. 16.
    Tadakuma K, DeVita LSY, Dubowsky S (2008) The experimental study of a precision parallel manipulator with binary actuation: with application to MRI cancer treatment. In: Proceedings of the IEEE ICRA, Pasadena, USAGoogle Scholar
  17. 17.
    Stoianovici D, Song D, Petrisor D, Ursu D, Mazilu D, Muntener M, Mutener M, Schar M, Patriciu A (2007) MRI stealth robot for prostate interventions. Minim Invasive Ther Allied Technol 16(4): 241–248PubMedCrossRefGoogle Scholar
  18. 18.
    Fischer GS, Iordachita I, Csoma C, Tokuda J, DiMaio SP, Tempany CM, Hata N, Fichtinger G (2008) MRI-compatible pneumatic robot for transperineal prostate needle placement. IEEE/ASME Trans Mechatron 13(3): 295–305CrossRefGoogle Scholar
  19. 19.
    Goldenberg AA, Trachtenberg J, Kucharczyk W, Yi Y, Haider M, Ma L, Weersink R, Raoufi C (2008) Robotic system for closed bore MRI-guided prostatic interventions. IEEE/ASME Trans Mechatron 13(3): 374–379CrossRefGoogle Scholar
  20. 20.
    van den Bosch MR, Moman MR, van Vulpen M, Battermann JJ, Duiveman E, van Schelven LJ, de Leeuw H, Lagendijk JJW, Moerland MA (2010) Mri-guided robotic system for transperineal prostate interventions: proof of principle. Phys Med Biol 55(5): N133–N140PubMedCrossRefGoogle Scholar
  21. 21.
    Su H, Harrington K, Cole G, Fischer G (2010) Modular needle steering driver for MRI-guided transperineal prostate intervention, IEEE ICRA, Workshop on snakes, worms and catheters, Anchorage, AKGoogle Scholar
  22. 22.
    Su H, Zervas M, Cole G, Furlong C, Fischer G (2011) Real-time MRI-guided needle placement robot with integrated fiber optic force sensing. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), ChinaGoogle Scholar
  23. 23.
    Zangos S, Eichler K, Engelmann K, Ahmed M, Dettmer S, Herzog C, Pegios W, Wetter A, Lehnert T, Mack MG, Vogl TJ (2005) MRguided transgluteal biopsies with an open low-field system in patients with clinically suspected prostate cancer: technique and preliminary results. Eur Radiol 15(1): 174–182PubMedCrossRefGoogle Scholar
  24. 24.
    Zangos S, Herzog C, Eichler K, Hammerstingl R, Lukoschek A, Guthmann S, Gutmann B, Schoepf UJ, Costello P, Vogl TJ (2007) MR-compatible assistance system for punction in a high-field system: device and feasibility transgluteal biopsies of the prostate gland. Euro Radiol 17(4): 1118–1124CrossRefGoogle Scholar
  25. 25.
    Song S, Cho N, Ficsher G, Hata N, Tempany C, Fichtinger G, Iordachita I (2010) Development of a pneumatic robot for MRI-guided transperineal prostate biopsy and brachytherapy: new approaches. In: Proceedings of the IEEE international conference on robotics and automation, Anchorage, USAGoogle Scholar
  26. 26.
    Song S, Cho N, Tokuda J, Hata N, Tempany C, Fichtinger G, Iordachita I (2010) MRI compatibility study of a pneumatically actuated robotic system for transperineal prostate needle placement. Computer-assisted radiology and surgery (CARS), Geneva, SwitzerlandGoogle Scholar
  27. 27.
    Song S, Cho N, Tokuda J, Hata N, Tempany C, Fichtinger G, Iordachita I (2010) Preliminary evaluation of a MRI-compatible modular robotic system for MRI-guided prostate interventions. BioRob, Tokyo, JapanGoogle Scholar
  28. 28.
    Kokes R, Lister K, Gullapalli R, Zhang B, MacMillan A, Richard H, Desai JP (2009) Towards a teleoperated needle driver robot with haptic feedback for RFA of breast tumors under continuous MRI. Med Image Anal 13: 445–455PubMedCrossRefGoogle Scholar
  29. 29.
    Su H, Shang W, Cole G, Harrington K, Fischer G (2010) Haptic system design for MRI-guided needle based prostate brachytherapy. Haptic symposiumGoogle Scholar
  30. 30.
    Tse ZH, Elhawary H, Rea M, Young I, Davis BL, Lamperth M (2009) A haptic unit designed for magnetic resonance guided biopsy. IMechE 223: 159–172CrossRefGoogle Scholar
  31. 31.
    Mewes P, Tokuda J, DiMaio SP, Fischer GS, Csoma C, Gobi DG, Tempany C, Fichtinger G, Hata N (2008) An integrated MRI and robot control software system for an MR-compatible robot in prostate intervention. In: Proceedings of the IEEE international conference on robotics and automation (ICRA)Google Scholar
  32. 32.
    Su H, Fischer G (2009) A 3-axis optical force/torque sensor for prostate needle placement in magnetic resonance imaging environments. In: Proceedings of the 2nd annual IEEE international conference on technologies for practical robot applications, Boston, MA, USA, pp 5–9Google Scholar
  33. 33.
    Park Y-L, Elayaperumal S, Daniel BL, Kaye E, Pauly KB, Black RJ, Cutkosky MR (2008) MRI-compatible haptics: feasibility of using optical fiber Bragg grating strain-sensors to detect deflection of needles in an MRI environment, International Society for Magnetic Resonance in Medicine (ISMRM) 2008, Toronto, CanadaGoogle Scholar
  34. 34.
    Tokuda J, Fischer GS, Papademetris X, Yaniv Z, Ibanez L, Cheng P, Liu H, Blevins J, Arata J, Golby AJ, Kapur T, Pieper S, Burdette EC, Fichtinger G, Tempany CM, Hata N (2009) OpenIGTLink: an open network protocol for image-guided therapy environment. Int J Med Robotics Comput Assist Surg 5(4): 423–434CrossRefGoogle Scholar
  35. 35.
    Tuncali K, Tokuda J, Iordachita I, Song SE, Fedorov A, Oguro S, Lasso A, Fennessy FM, Tang Y, Tempany CM, Hata N (2011) 3T MRI-guided transperineal trgeted prostate biopsy: clinical feasibility, safety, and early results, ISMRMGoogle Scholar
  36. 36.
    Tokuda J, Tuncali K, Iordachita I, Song SE, Fedorov A, Oguro S, Lasso A, Fennessy FM, Tang Y, Tempany CM, Hata N (2011) Preliminary accuracy evaluation of 3T MRI-guided transperineal prostate biopsy with grid template, ISMRMGoogle Scholar
  37. 37.
    Masamune K, Fichtinger G, Patriciu A, Sakuma I, Dohi T, Stoianovici D (2001) System for robotically assisted percutaneous procedures with computed tomography guidance. J Comp Aided Surg 6: 370–383CrossRefGoogle Scholar
  38. 38.
    Van der Kwasta TH, Woltersc T, Evansa A, Roobolc M (2008) Single prostatic cancer foci on prostate biopsy. Eur Urol Suppl 7(8): 549–556CrossRefGoogle Scholar
  39. 39.
    Xu H, Lasso A, Vikal S, Guion P, Krieger A, Kaushal A, Whitcomb LL, Fichtinger G (2010) MRI-guided robotic prostate biopsy: a clinical accuracy validation. Medical image computing and computer-assisted intervention (MICCAI), pp 383–391Google Scholar

Copyright information

© CARS 2011

Authors and Affiliations

  • Reza Seifabadi
    • 1
    • 2
    Email author
  • Sang-Eun Song
    • 3
  • Axel Krieger
    • 1
  • Nathan Bongjoon Cho
    • 1
  • Junichi Tokuda
    • 3
  • Gabor Fichtinger
    • 1
    • 2
  • Iulian Iordachita
    • 1
  1. 1.Laboratory for Computational Sensing and Robotics (LCSR)The Johns Hopkins UniversityBaltimoreUSA
  2. 2.Laboratory for Percutaneous surgery (Perk Lab)Queen’s UniversityKingstonCanada
  3. 3.Department of RadiologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations