Electronic device for endosurgical skills training (EDEST): study of reliability

  • J. B. Pagador
  • J. Uson
  • M. A. Sánchez
  • J. L. Moyano
  • J. Moreno
  • P. Bustos
  • J. Mateos
  • F. M. Sánchez-Margallo
Original Article



Minimally Invasive Surgery procedures are commonly used in many surgical practices, but surgeons need specific training models and devices due to its difficulty and complexity. In this paper, an innovative electronic device for endosurgical skills training (EDEST) is presented. A study on reliability for this device was performed.


Different electronic components were used to compose this new training device. The EDEST was focused on two basic laparoscopic tasks: triangulation and coordination manoeuvres. A configuration and statistical software was developed to complement the functionality of the device. A calibration method was used to assure the proper work of the device. A total of 35 subjects (8 experts and 27 novices) were used to check the reliability of the system using the MTBF analysis.


Configuration values for triangulation and coordination exercises were calculated as 0.5 s limit threshold and 800–11,000 lux range of light intensity, respectively. Zero errors in 1,050 executions (0%) for triangulation and 21 errors in 5,670 executions (0.37%) for coordination were obtained. A MTBF of 2.97 h was obtained.


The results show that the reliability of the EDEST device is acceptable when used under previously defined light conditions. These results along with previous work could demonstrate that the EDEST device can help surgeons during first training stages.


Electronic device Minimally invasive surgery Surgical assessment Skills training 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Usón J, Sánchez FM, Pascual S, Climent S (2007) Formación en Cirugía Laparoscópica Paso a paso. Centro de Cirugía de Mínima Invasión, CáceresGoogle Scholar
  2. 2.
    Fried GM (2008) FLS assessment of competency using simulated laparoscopic tasks. J Gastrointest Surg 12(2): 210–212PubMedCrossRefGoogle Scholar
  3. 3.
    Scott DJ, Ritter EM, Tesfay ST, Pimentel EA, Nagji A, Fried GM (2008) Certification pass rate of 100% for fundamentals of laparoscopic surgery skills after proficiency-based training. Surg Endosc 22(8): 1887–1893PubMedCrossRefGoogle Scholar
  4. 4.
    McCluney AL, Vassiliou MC, Kaneva PA, Cao J, Stanbridge DD, Feldman LS, Fried GM (2007) FLS simulator performance predicts intraoperative laparoscopic skill. Surg Endosc 21(11): 1991–1995PubMedCrossRefGoogle Scholar
  5. 5.
    Feldman LS, Hagarty SE, Ghitulescu G, Stanbridge D, Fried GM (2004) Relationship between objective assessment of technical skills and subjective in-training evaluations in surgical residents. J Am Coll Surg 198: 105–110PubMedCrossRefGoogle Scholar
  6. 6.
    Vassiliou MC, Ghitulescu GA, Feldman LS, Stanbridge D, Leffondré K, Sigman HH, Fried GM (2006) MISTELS program to measure technical skill in laparoscopic surgery : evidence for reliability. Surg Endosc 20(5): 744–747PubMedCrossRefGoogle Scholar
  7. 7.
    Cerilli GJ, Merrick HW, Staren ED (2001) Objective structured clinical examination technical skill stations correlate more closely with postgraduate year level than do clinical skill stations. Am Surg 67(4): 323–326PubMedGoogle Scholar
  8. 8.
    Faulkner H, Regehr G, Martin JA, Reznick R (1996) Validation of an objective structured assessment of technical skill for surgical residents. Acad Med 71(12): 1363–1365PubMedCrossRefGoogle Scholar
  9. 9.
    Martin JA, Regehr G, Reznick R, Macrae H, Murnaghan J, Hutchison C, Brown M (1997) Objective structured assessment of technical skill (OSATS) for surgical residents. Br J Surg 84(2): 273–278PubMedCrossRefGoogle Scholar
  10. 10.
    Reznick R, Regehr G, MacRae H, Martin J, McCulloch W (1997) Testing technical skill via an innovative “bench station” examination. Am J Surg 173(3): 226–230PubMedCrossRefGoogle Scholar
  11. 11.
    Datta V, Chang A, Mackay S, Darzi A (2002) The relationship between motion analysis and surgical technical assessments. Am J Surg 184(1): 70–73PubMedCrossRefGoogle Scholar
  12. 12.
    Mackay S, Datta V, Mandalia M, Bassett P, Darzi A (2002) Electromagnetic motion analysis in the assessment of surgical skill: relationship between time and movement. ANZ J Surg 72(9): 632–634PubMedCrossRefGoogle Scholar
  13. 13.
    Moorthy K, Munz Y, Dosis A, Bello F, Darzi A (2003) Motion analysis in the training and assessment of minimally invasive surgery. Minim Invasive Ther Allied Technol 12(3): 137–142PubMedGoogle Scholar
  14. 14.
    Brydges R, Classen R, Larmer J, Xeroulis G, Dubrowski A (2006) Computer-assisted assessment of one-handed knot tying skills performed within various contexts: a construct validity study. Am J Surg 192(1): 109–113PubMedCrossRefGoogle Scholar
  15. 15.
    Saleh GM, Voyatzis G, Hance J, Ratnasothy J, Darzi A (2006) Evaluating surgical dexterity during corneal suturing. Arch Ophthalmol 124(9): 1263–1266PubMedCrossRefGoogle Scholar
  16. 16.
    Brydges R, Sidhu R, Park J, Dubrowski A (2007) Construct validity of computer-assisted assessment: quantification of movement processes during a vascular anastomosis on a live porcine model. Am J Surg 193(4): 523–529PubMedCrossRefGoogle Scholar
  17. 17.
    Reiley CE, Lin HC, Varadarajan B, Vagvolgyi B, Khudanpur S, Yuh DD, Hager GD (2008) Automatic recognition of surgical motions using statistical modeling for capturing variability. Stud Health Technol Inform 132: 396–401PubMedGoogle Scholar
  18. 18.
    Leong JJ, Leff DR, Das A, Aggarwal R, Reilly P, Atkinson HD, Emery RJ, Darzi AW (2008) Validation of orthopaedic bench models for trauma surgery. J Bone Joint Surg Br 90(7): 958–965PubMedCrossRefGoogle Scholar
  19. 19.
    Ezra DG, Aggarwal R, Michaelides M, Okhravi N, Verma S, Benjamin L, Bloom P, Darzi A, Sullivan P (2009) Skills acquisition and assessment after a microsurgical skills course for ophthalmology residents. Ophthalmology 116(2): 257–262PubMedCrossRefGoogle Scholar
  20. 20.
    Hayter MA, Friedman Z, Bould MD, Hanlon JG, Katznelson R, Borges B, Naik VN (2009) Validation of the Imperial College Surgical Assessment Device (ICSAD) for labour epidural placement. Can J Anaesth 56(6): 419–426PubMedCrossRefGoogle Scholar
  21. 21.
    Overly FL, Sudikoff SN, Shapiro MJ (2007) High-fidelity medical simulation as an assessment tool for pediatric residents’ airway management skills. Paediatr Emerg Care 23(1): 11–15CrossRefGoogle Scholar
  22. 22.
    Adler M, Trainor J, Siddall V, McGaghie W (2007) Development and evaluation of high-fidelity simulation case scenarios for pediatric resident education. Ambul paediatr 7(2): 182–186CrossRefGoogle Scholar
  23. 23.
    Maharaj CH, Costello JF, Harte BH, Laffey JG (2008) Evaluation of the Airtraq and Macintosh laryngoscopes in patients at increased risk for difficult tracheal intubation. Anaesthesia 63(2): 182– 188PubMedCrossRefGoogle Scholar
  24. 24.
    Tubbs RJ, Murphy B, Mainiero MB, Shapiro M, Kobayashi L, Lindquist D, Smith JL, Siegel N (2009) High-fidelity medical simulation as an assessment tool for radiology residents’ acute contrast reaction management skills. J Am Coll Radiol 6(8): 582–587PubMedCrossRefGoogle Scholar
  25. 25.
    Morgan PJ, Pittini R, Regehr G, Marrs C, Haley MF (2007) Evaluating teamwork in a simulated obstetric environment. Anesthesiology 106(5): 907–915PubMedCrossRefGoogle Scholar
  26. 26.
    Cooper JB, Taqueti VR (2008) A brief history of the development of mannequin simulators for clinical education and training. Postgrad Med J 84(997): 563–570PubMedCrossRefGoogle Scholar
  27. 27.
    Kanumuri P, Ganai S, Wohaibi EM, Bush RW, Grow DR, Seymour NE (2008) Virtual reality and computer-enhanced training devices equally improve laparoscopic surgical skill in novice. J Soc Laparo Endosc Surgeons 12(3): 219–226Google Scholar
  28. 28.
    Fichera A, Prachan V, Kives S, Levine R, Hasson HM (2004) Physical reality simulation for training of laparoscopists in the 21st century a multi-specialty and multi-institutional study. JSLS 9: 125–129Google Scholar
  29. 29.
    Botden SM, Buzink SN, Schijven MP, Jakimowicz JJ (2007) Augmented versus virtual reality laparoscopic simulation: what is the difference? : a comparison of the ProMis augmented reality laparoscopic simulator versus lapsim virtual reality laparoscopic simulator. World J Surg 31(4): 764–772PubMedCrossRefGoogle Scholar
  30. 30.
    Madan AK, Frantzides CT, Tebbit CL, Quiros RM. (2005) Participant’s opinions of laparoscopic trainers during basic laparoscopic training courses. Am J of Surg 189: 758–761CrossRefGoogle Scholar
  31. 31.
    Stylopoulos N, Cotin S, Maithel SK, Ottensmeye M, Jackson PG, Bardsley RS, Neumann PF, Rattner DW, Dawson SL (2004) Computer-enhanced laparoscopic training system (CELTS): bridging the gap. Surg Endosc 18(5): 782–789PubMedCrossRefGoogle Scholar
  32. 32.
    Rosen J, Brown JD, Chang L, Sinanan MN, Hannaford B (2006) Generalized approach for modeling minimally invasive surgery as a stochastic process using a discrete Markov model. IEEE Trans Biomed Eng 53(3): 399–413PubMedCrossRefGoogle Scholar
  33. 33.
    Gunther S, Rosen J, Hannaford B, Sinanan M (2007) The red DRAGON: a multi-modality system for simulation and training in minimally invasive surgery. Stud Health Technol Inform 125: 149–154PubMedGoogle Scholar
  34. 34.
    Young D, Cassidy D, Slevin F, Ryan D (2006) Augmented reality simulator for hand-assisted laparoscopic colectomy. SAGES 2006, Emerging Technology Poster Abstracts. ETP036Google Scholar
  35. 35.
    Ritter EM, Kindelan TW, Michael C, Pimentel EA, Bowyer MW (2007) Concurrent validity of augmented reality metrics applied to the fundamentals of laparoscopic surgery (FLS). Surg Endosc 21(8): 1441–1445PubMedCrossRefGoogle Scholar
  36. 36.
    Madan AK, Frantzides CT, Tebbit C, Shervin N (2005) Self-reported versus observed scores in laparoscopic skills training. Surg Endosc 19(5): 670–672PubMedCrossRefGoogle Scholar
  37. 37.
    Stylopoulos N, Cotin S, Dawson S, Ottensmeyer M, Neumann P, Bardsley R, Russell M, Jackson P, Rattner D (2003) CELTS: a clinically-based computer enhanced laparoscopic training system. Stud Health Technol Inform 94: 336–342PubMedGoogle Scholar
  38. 38.
    Lum MJ, Rosen J, Sinanan MN, Hannaford B (2006) Optimization of a spherical mechanism for a minimally invasive surgical robot: theoretical and experimental approaches. IEEE Trans Biomed Eng 53(7): 1440–1445PubMedCrossRefGoogle Scholar
  39. 39.
    Botden SM, Jakimowicz JJ (2009) What is going on in augmented reality simulation in laparoscopic surgery? Surg Endosc 23: 1693–1700PubMedCrossRefGoogle Scholar
  40. 40.
    Noh Y, Segawa M, Shimomura A, Ishii H, Solis J, Hatake K, Takanishi A (2008) WKA-1R Robot assisted quantitative assessment of airway management. Int J Comput Assist Radiol Surg 3(6): 543–550CrossRefGoogle Scholar
  41. 41.
    Solis J, Oshima N, Ishii H, Matsuoka N, Hatake K, Takanishi A (2008) Towards understanding the suture/ligature skills during the training process using WKS-2RII. Int J Comput Assist Radiol Surg 3(3–4): 231–239CrossRefGoogle Scholar
  42. 42.
    Grantcharov TP, Funch-Jensen P (2008) Can everyone achieve proficiency with the laparoscopic technique? Learning curve patterns in technical skills acquisition. Am J Surg 197(4): 447–449 Epub 2009 Feb 13CrossRefGoogle Scholar
  43. 43.
    Feldman LS, Cao J, Andalib A, Fraser S, Fried GM (2009) A method to characterize the learning curve for performance of a fundamental laparoscopic simulator task: defining “learning plateau” and “learning rate”. Surgery 146(2): 381–386 Epub 2009 Jun 25PubMedCrossRefGoogle Scholar
  44. 44.
    Scott DJ, Dunnington GL (2008) The new ACS/APDS Skills Curriculum: moving the learning curve out of the operating room. J Gastrointest Surg 12(2): 213–221 Epub 2007 Oct 10PubMedCrossRefGoogle Scholar
  45. 45.
    Laguna MP, de Reijke TM, de la Rosette JJ (2009) How far will simulators be involved into training? Curr Urol Rep 10(2): 97–105PubMedCrossRefGoogle Scholar
  46. 46.
    Sturm LP, Windsor JA, Cosman PH, Cregan P, Hewett PJ, Maddern GJ (2008) A systematic review of skills transfer after surgical simulation training. Ann Surg 248(2): 166–179PubMedCrossRefGoogle Scholar
  47. 47.
    Fried MP, Sadoughi B, Gibber MJ, Jacobs JB, Lebowitz RA, Ross DA, Bent JP 3rd, Parikh SR, Sasaki CT, Schaefer SD (2010) From virtual reality to the operating room: the endoscopic sinus surgery simulator experiment. Otolaryngol Head Neck Surg 142(2): 202–207PubMedCrossRefGoogle Scholar
  48. 48.
    Sroka G, Feldman LS, Vassiliou MC, Kaneva PA, Fayez R, Fried GM (2010) Fundamentals of laparoscopic surgery simulator training to proficiency improves laparoscopic performance in the operating room-a randomized controlled trial. Am J Surg 199(1): 115–120PubMedCrossRefGoogle Scholar
  49. 49.
    Zheng B, Hur HC, Johnson S, Swanström LL (2010) Validity of using fundamentals of laparoscopic surgery (FLS) program to assess laparoscopic competence for gynecologists. Surg Endosc 24(1): 152–160PubMedCrossRefGoogle Scholar
  50. 50.
    Gallagher AG, Ritter EM, Satava RM (2003) Fundamental principles of validation, and reliability: rigorous science for the assessment of surgical education and training. Surg Endosc 17(10): 1525–1529PubMedCrossRefGoogle Scholar
  51. 51.
    IEEE 90—Institute of Electrical and Electronics Engineers (1990) IEEE standard computer dictionary: a compilation of IEEE standard computer glossaries. New York, NYGoogle Scholar
  52. 52.
    Jones JV (2006) Concept of reliability. In: Integrated logistics support handbook. Sole Press, New York, p 4.2Google Scholar
  53. 53.
    IIT–Research Institute (2001) Typical Equipment MTBF ValuesGoogle Scholar
  54. 54.
    Sánchez-Margallo FM, Sánchez MA, Pérez FJ, Pagador JB, Mateos J, Bustos P, Díaz-Güemes I, Moyano JL, Correa L, Usón J (2009) Dispositivo Electrónico para el Entrenamiento de Técnicas Endoquirúrgicas (DEETE)®: validación clínica subjetiva. XVII Reunión Nacional de CirugíaGoogle Scholar

Copyright information

© CARS 2010

Authors and Affiliations

  • J. B. Pagador
    • 1
  • J. Uson
    • 1
  • M. A. Sánchez
    • 1
  • J. L. Moyano
    • 1
  • J. Moreno
    • 2
  • P. Bustos
    • 2
  • J. Mateos
    • 3
  • F. M. Sánchez-Margallo
    • 1
  1. 1.Laparoscopic UnitMinimally Invasive Surgery Centre Jesús UsónCáceresSpain
  2. 2.Lab. of Robotics and Artificial VisionUniversity of ExtremaduraCáceresSpain
  3. 3.Ingeniería Automatización y Diseño de Extremadura (IADEX)CáceresSpain

Personalised recommendations