Advertisement

A geodesic deformable model for automatic segmentation of image sequences applied to radiation therapy

  • G. BuenoEmail author
  • O. Déniz
  • J. Salido
  • C. Carrascosa
  • J. M. Delgado
Original Article

Abstract

Purpose

Organ motion should be taken into account for image-guided fractionated radiotherapy. A deformable segmentation and registration method was developed for inter-and intra-fraction organ motion planning and evaluation.

Methods

Energy minimizing active models were synthesized for tracking a set of organs delineated by regions of interest (ROI) in radiotherapy treatment. The initial model consists of a surface deformed to match the ROI contour by geometrical properties, following a heat flow model. The deformable segmentation model was tested using a Shepp-Logan head CT simulation, and different quantitative metrics were applied such as ROC analysis, Jaccard index, Dice coefficient and Hausdorff distance.

Results

Experimental evaluation of automated versus manual segmentation was done for the cardiac, thoracic and pelvic regions. The method has been quantitatively validated, obtaining an average of 93.3 and 99.2% for the sensitivity and specificity, respectively, 90.79% for the Jaccard index, 95.15% for the Dice coefficient and 0.96% mm for the Hausdorff distance.

Conclusions

Model-based deformable segmentation was developed and tested for image-guided radiotherapy treatment planning. The method is efficient, robust and has sufficient accuracy for 2D CT data without markers.

Keywords

Radiotherapy treatment Energy minimizing models Geodesic active model Organ tracking Segmentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Foskey M, Davis B, Goyal L, Chang S, Chaney E, Strehl N, Tomei S, Rosenman J, Joshi S (2005) Large deformation three-dimensional image registration in image-guided radiation therapy. Phys Med Biol 50: 5869–5892PubMedCrossRefGoogle Scholar
  2. 2.
    Webb S (2006) Does elastic tissue intrafraction motion with density changes forbid motion-compensated radiotherapy?. Phys Med Biol 51: 1449–1462PubMedCrossRefGoogle Scholar
  3. 3.
    Costa M, Delingette H, Ayache N (2007) Automatic segmentation of the bladder using deformable models. In: Proceedings of 4th IEEE international symposium on biomedical imaging: from nano to macro. ISBI, Arlington, VA, pp 904–907Google Scholar
  4. 4.
    Lee C, Chung P (2004) Identifying abdominal organs using robust fuzzy inference model. In: IEEE international conference on networking, sensing and control, vol 2. Washington, DC, USA, pp 1289–1294Google Scholar
  5. 5.
    Banik S, Rangayyan R, Boag G (2009) Landmarking and segmentation of 3D CT images. Synthesis lectures on biomedical engineering, vol 4, issue 1. Morgan and Claypool Publishers, New Jersey, pp 1–170Google Scholar
  6. 6.
    Collier D, Burnett S, Amin M (2003) Assessment of consistency in contouring of normal-tissue anatomic structures. J Appl Clin Med Phys 4(1): 17–24PubMedCrossRefGoogle Scholar
  7. 7.
    Fisher M, Su Y, Aldridge R (2008) 9. Series in medical physics and biomedical engineering. In: Some applications of intelligent systems in cancer treatment: a review. Intelligent and adaptive systems in medicine. Taylor & Francis Group, London, pp 283–303Google Scholar
  8. 8.
    van Herk M, Remeijer P, PRasch C, Lebesque J (2000) The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys 47(4): 1121–1135PubMedCrossRefGoogle Scholar
  9. 9.
    BIR (2003) Geometric uncertainties in radiotherapy: defining the planning target volume. British Institute of RadiologyGoogle Scholar
  10. 10.
    van de Bunt L, Jrgenliemk-Schulz IM, de Kort G, Roesink JM, Tersteeg R, van der Heide U (2008) Motion and deformation of the target volumes during imrt for cervical cancer: what margins do we need?. Radiother Oncol 88: 233–240PubMedCrossRefGoogle Scholar
  11. 11.
    Kerkhof EM, van der Put RW, Raaymakers B, van der Heide U, Jrgenliemk-Schulz I, Lagendijk J (2009) Intrafraction motion in patients with cervical cancer: the benefit of soft tissue registration using mri. Radiother Oncol 93: 115–121PubMedCrossRefGoogle Scholar
  12. 12.
    Murena L, Redpathb A, Lordc H, McLaren D (2007) Image-guided radiotherapy of bladder cancer: bladder volume variation and its relation to margins. Radiother Oncol 84: 307–313CrossRefGoogle Scholar
  13. 13.
    Su Y, Fisher M, Rowland RS (2007) Marker-less intra-fraction organ motion tracking using hybrid asm. Int J CARS 2: 231–243CrossRefGoogle Scholar
  14. 14.
    Haas B, Coradi T, Scholz M, Kunz P, Huber M, Oppitz U, André L, Lengkeek V, Huyskens D, van Esch A, Reddick R (2008) Assessment of consistency in contouring of normal-tissue anatomic structures. Phys Med Biol 53: 1751–1771PubMedCrossRefGoogle Scholar
  15. 15.
    Shi F, Yang J, Zhu Y (2009) Automatic segmentation of bladder in ct images. J Zhejiang Univers Sci A 10(2): 239–246CrossRefGoogle Scholar
  16. 16.
    Camapum J, Silva A, Freitas A, Bassani H (2004) Segmentation of clinical structures from images of the human pelvic area. In: Proceedings of 17th Brazilian Symposium on computer graphics and image processing, SIBGRAPI’04, pp 10–16Google Scholar
  17. 17.
    Bueno G, Fisher M, Burnham K (2001) Automatic segmentation of clinical structures for rtp: Evaluation of a morphological approach. In: Proceedings of medical image understanding and analysis. London, UK, pp 73–76Google Scholar
  18. 18.
    Mazonakis M, Damilakis J, Varveris H, Prassopoulos P, Gourtsoyiannis N (2001) Image segmentation in treatment planning for prostate cancer using the region growing technique. British J Radiol 74: 243–249Google Scholar
  19. 19.
    Gibou F, Levy D, Cádenas C (2005) Partial differential equations based segmentation for radiotherapy treatment planning. Math Biosci Eng 2(2): 209–226PubMedGoogle Scholar
  20. 20.
    Rousson M, Khamene A, Diallo M (2005) Constrained surface evolutions for prostate and bladder segmentation in CT images. Lecture notes in computer science, vol 3765. Springer, Berlin, pp 251–260Google Scholar
  21. 21.
    Bueno G, Martínez A, Adán A (2004) Fuzzy-snake segmentation of anatomical structures applied to ct images. Lecture notes in computer science 2(3212): 33–42CrossRefGoogle Scholar
  22. 22.
    Ripoche X, Atif J, Osorio A (2004) A 3d discrete deformable model guided by mutual information for medical image segmentation. In: Proceedings of the Medical Imaging Conference, SPIE, San Diego, USAGoogle Scholar
  23. 23.
    Terzopoulos D, Fleischer K (1988) Deformable models, the visual computer. Springer, BerlinGoogle Scholar
  24. 24.
    Kass M, Witkin A, Terzopoulos D (1998) Snakes: active contour models. Int J Comput Vis, pp 321–331Google Scholar
  25. 25.
    Bueno G (2008) 10. In: Fuzzy systems and deformable models. Series in medical physics and biomedical engineering, Intelligent and Adaptive Systems in Medicine. Taylor & Francis Group, London, pp 305–329Google Scholar
  26. 26.
    Osher S, Paragios N (2003) Geometric level set methods in imaging, vision and graphics. Springer, New YorkGoogle Scholar
  27. 27.
    Lee M, Park S, Cho W, Kim S, Jeong C (2008) Segmentation of medical images using a geometric deformable model and its visualization. Can J Elect Comput Eng 33: 15–19CrossRefGoogle Scholar
  28. 28.
    Malladi R, Sethian J, Vemuri B (1995) Shape modeling with front propagation: a level set approach. IEEE Trans on PAMI 17(4): 158–175Google Scholar
  29. 29.
    Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vis 22(1): 61–79CrossRefGoogle Scholar
  30. 30.
    Paragios N (2002) A level set approach for shape-driven segmentation and tracking of the left ventricle. IEEE Trans Nucl Sci 21(3): 21–43Google Scholar
  31. 31.
    Shepp L, Logan B (1974) The fourier reconstruction of a head section. IEEE Trans Med Imaging 22(6): 773–776Google Scholar
  32. 32.
    Zezula P, Amato G, Dohnal V, Batko M (2006) Similarity search the metric space approach. Springer, BerlinGoogle Scholar
  33. 33.
    Huttenlocher D, Klanderman G, Rucklidge W (1993) Comparing images using the hausdorff distance. IEEE Trans Pattern Anal Mach Intell 15(9): 850–863CrossRefGoogle Scholar
  34. 34.
    Munkres J (1999) Topology. 2. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  35. 35.
    Bueno G, Déniz O, Carrascosa C, Delgado J, Brualla L (2009) Fast monte carlo simulation on a voxelized human phantom deformed to a patient. Med Phys 36(11): 5162–5174PubMedCrossRefGoogle Scholar

Copyright information

© CARS 2010

Authors and Affiliations

  • G. Bueno
    • 1
    Email author
  • O. Déniz
    • 1
  • J. Salido
    • 1
  • C. Carrascosa
    • 2
  • J. M. Delgado
    • 3
  1. 1.E.T.S.Ingenieros IndustrialesUniversidad de Castilla-La ManchaCiudad RealSpain
  2. 2.Department RadiofísicaHospital General de Ciudad RealCiudad RealSpain
  3. 3.Instituto Oncológico (Grupo IMO), Hospital La MilagrosaMadridSpain

Personalised recommendations