Automatic detection of abnormal vascular cross-sections based on density level detection and support vector machines

  • Maria A. Zuluaga
  • Isabelle E. Magnin
  • Marcela Hernández Hoyos
  • Edgar J. F. Delgado Leyton
  • Fernando Lozano
  • Maciej Orkisz
Original Article

Abstract

Purpose

The goal is to automatically detect anomalous vascular cross-sections to attract the radiologist’s attention to possible lesions and thus reduce the time spent to analyze the image volume.

Materials and methods

We assume that both lesions and calcifications can be considered as local outliers compared to a normal cross-section. Our approach uses an intensity metric within a machine learning scheme to differentiate normal and abnormal cross-sections. It is formulated as a Density Level Detection problem and solved using a Support Vector Machine (DLD-SVM). The method has been evaluated on 42 synthetic phantoms and on 9 coronary CT data sets annotated by 2 experts.

Results

The specificity of the method was 97.57% on synthetic data, and 86.01% on real data, while its sensitivity was 82.19 and 81.23%, respectively. The agreement with the observers, measured by the kappa coefficient, was substantial (κ = 0.72). After the learning stage, which is performed off-line, the average processing time was within 10 s per artery.

Conclusions

To our knowledge, this is the first attempt to use the DLD-SVM approach to detect vascular abnormalities. Good specificity, sensitivity and agreement with experts, as well as a short processing time, show that our method can facilitate medical diagnosis and reduce evaluation time by attracting the reader’s attention to suspect regions.

Keywords

Vascular disease Atherosclerosis Computed tomography Computer assisted diagnosis Support vector machines Density level detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adame IM, van der Geest RJ, Wasserman B, Mohamed M, Reiber JHC, Lelieveldt BPF (2004) Automatic plaque characterization and vessel wall segmentation in magnetic resonance images of atherosclerotic carotid arteries. In: Fitzpatrick JM, Sonka M (eds) Proceedings of SPIE Med. Imaging 2004: image processing, vol 5370. San Diego, pp 265–273Google Scholar
  2. 2.
    Barnett V, Lewis T (1994) Outliers in Statistical Data, 3rd edn. John Wiley & Sons, West SussexGoogle Scholar
  3. 3.
    Bellman R (1961) Adaptive control processes. Princeton University Press, New JerseyGoogle Scholar
  4. 4.
    Chang CC, Lin CJ (2001) LIBSVM: a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
  5. 5.
    Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20(1): 37–46. doi:10.1177/001316446002000104 CrossRefGoogle Scholar
  6. 6.
    Dehmeshki J, Ye X, Wang F, Lin XY, Abaei M, Siddique MM, Qanadli SD (2004) An accurate and reproducible scheme for quantification of coronary artery calcification in ct scans. In: Proceedings of 26th annual international conference IEEE EMBS. San Francisco, California, USA, pp 1918–1921Google Scholar
  7. 7.
    Fleiss JL (1971) Measuring nominal scale agreement among many raters. Psychol Bull 76(5): 378–382CrossRefGoogle Scholar
  8. 8.
    Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering. In: Wells WM, Colchester A, Delp SL (eds) Medical image computing and computer-assisted intervention–MICCAI’98, Lecture Notes in Computer Science, vol 1496. Springer Verlag, Berlin, Germany, pp 130–137Google Scholar
  9. 9.
    Hernández Hoyos M, Orkisz M, Douek PC, Magnin IE (2005) Assessment of carotid artery stenoses in 3D contrast-enhanced magnetic resonance angiography, based on improved generation of the centerline. Mach Graph Vis 14(4): 349–378Google Scholar
  10. 10.
    Hernández Hoyos M, Serfaty JM, Maghiar A, Mansard C, Orkisz M, Magnin IE, Douek PC (2006) Evaluation of semi-automatic arterial stenosis quantification. Int J Comput Assist Radiol Surg 1(3): 167–175CrossRefGoogle Scholar
  11. 11.
    Hush D, Kelly P, Scovel C, Steinwart I (2005) Provably fast algorithms for anomaly detection. Technical Report LA-UR-05-4367, Los Alamos National LaboratoryGoogle Scholar
  12. 12.
    Išgum I, Rutten A, Prokop M, van Ginneken B (2007) Detection of coronary calcifications from computed tomography scans for automated risk assessment of coronary artery disease. Med Phys 34(4): 1450–1461PubMedCrossRefGoogle Scholar
  13. 13.
    Kang DG, Suh DC, Ra JB (2009) Three-dimensional blood vessel quantification via centerline deformation. IEEE Trans Med Imaging 28(3): 405–414PubMedCrossRefGoogle Scholar
  14. 14.
    Krissian K, Maladain G, Ayache N (2000) Model based detection of tubular structures in 3D images. Comput Vis Image Unders 80: 130–171CrossRefGoogle Scholar
  15. 15.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1): 159–174PubMedCrossRefGoogle Scholar
  16. 16.
    Lekadir K, Yang GZ (2006) Carotid artery segmentation using an outlier immune 3D active shape models framework. In: Larsen R, Nielsen M, Sporring J (eds) MICCAI 2006, LNCS 4190. Springer, Berlin, Heidelberg, Copenhagen, pp 620–627Google Scholar
  17. 17.
    Lesage D, Angelini ED, Bloch I, Funka-Lea G (2009) A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes. Med Image Anal 13(6): 819–845PubMedCrossRefGoogle Scholar
  18. 18.
    Renard F, Yang Y (2008) Image analysis for detection of coronary artery soft plaques in MDCT images. In: 2008 IEEE International Symposium Biomed. Imaging: from nano to macro (ISBI 2008). Paris, France, pp 25–28Google Scholar
  19. 19.
    Rinck D, Krüger S, Reimann A, Scheuering M (2006) Shape-based segmentation and visualization techniques for evaluation of atherosclerotic plaques in coronary artery disease. In: Cleary KR, Galloway Jr RL (eds) Proceedings of SPIE Med. Imaging 2006: Visualization, image-guided procedures and display, vol 6141, pp 124–132Google Scholar
  20. 20.
    Salvado O (2006) Characterization of atherosclerosis with magnetic resonance imaging, challenges and validation. Ph.D. thesis, Case Western Reserve UniversityGoogle Scholar
  21. 21.
    Schaap M, Metz C, van Walsum T, van der Giessen AG, Weustink AC, Mollet NR, Bauer C, Bogunovic H, Castro C, Deng X, Dikici E, O’Donnell T, Frenay M, Friman O, Hernández Hoyos M, Kitslaar PH, Krissian K, Kühnel C, Luengo-Oroz MA, Orkisz M, Smedby Ö, Styner M, Szymczak A, Tek H, Wang C, Warfield SK, Zambal S, Zhang Y, Krestin GP, Niessen WJ (2009) Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms. Med Image Anal 13(5): 701–714PubMedCrossRefGoogle Scholar
  22. 22.
    Schölkopf B, Platt JC, Shawe-Taylor J, Smola AJ, Williamson RC (2001) Estimating the support of a high-dimensional distribution. Neural Comput 13: 1443–1471PubMedCrossRefGoogle Scholar
  23. 23.
    Steinwart I, Hush D, Scovel C (2005) A classification framework for anomaly detection. J Mach Learn Res 6: 211–232Google Scholar
  24. 24.
    Steinwart I, Hush D, Scovel C (2005) Density level detection is classification. Neural Inf Process Syst 17: 1337–1344Google Scholar
  25. 25.
    Vukadinovic D, van Walsum T, Rozie S, de Weert T, Manniesing R, van der Lugt A, Niessen WJ (2009) Carotid artery segmentation and plaque quantification in CTA. In: Proceedings of 6th IEEE International Symposium Biomed. Images (ISBI’09). Boston, USA, pp 835–838Google Scholar
  26. 26.
    Wong WCK, Chung ACS (2006) Augmented vessels for quantitative analysis of vascular abnormalities and endovascular treatment planning. IEEE Trans. Med. Imaging 25(6): 665–684PubMedCrossRefGoogle Scholar
  27. 27.
    World Health Organization: The top ten causes of death—fact sheet N310 (2008)Google Scholar
  28. 28.
    Wörz S, Rohr K (2007) Segmentation and quantification of human vessels usind a 3D cylindrical intensity model. IEEE Trans Image Process 16(8): 1994–2004PubMedCrossRefGoogle Scholar
  29. 29.
    Zhao F, Zhang H, Wahle A, Thomas MT, Stolpen AH, Scholz TD, Sonka M (2009) Congenital aortic disease: 4D magnetic resonance segmentation and quantitative analysis. Med Image Anal 13(3): 483–493PubMedCrossRefGoogle Scholar

Copyright information

© CARS 2010

Authors and Affiliations

  • Maria A. Zuluaga
    • 1
    • 2
  • Isabelle E. Magnin
    • 2
  • Marcela Hernández Hoyos
    • 1
  • Edgar J. F. Delgado Leyton
    • 1
  • Fernando Lozano
    • 3
  • Maciej Orkisz
    • 2
  1. 1.Grupo Imagine, Grupo de Ingeniería BiomédicaUniversidad de los AndesBogotáColombia
  2. 2.CREATIS; Université de Lyon; Université Lyon 1; INSA-Lyon; CNRS UMR5220; INSERM U630VilleurbanneFrance
  3. 3.CMUA, Universidad de los Andes BogotáBogotaColombia

Personalised recommendations