Advertisement

3D printing based on imaging data: review of medical applications

  • F. Rengier
  • A. Mehndiratta
  • H. von Tengg-Kobligk
  • C. M. Zechmann
  • R. Unterhinninghofen
  • H.-U. Kauczor
  • F. L. Giesel
Review Article

Abstract

Purpose

Generation of graspable three-dimensional objects applied for surgical planning, prosthetics and related applications using 3D printing or rapid prototyping is summarized and evaluated.

Materials and methods

Graspable 3D objects overcome the limitations of 3D visualizations which can only be displayed on flat screens. 3D objects can be produced based on CT or MRI volumetric medical images. Using dedicated post-processing algorithms, a spatial model can be extracted from image data sets and exported to machine-readable data. That spatial model data is utilized by special printers for generating the final rapid prototype model.

Results

Patient–clinician interaction, surgical training, medical research and education may require graspable 3D objects. The limitations of rapid prototyping include cost and complexity, as well as the need for specialized equipment and consumables such as photoresist resins.

Conclusions

Medical application of rapid prototyping is feasible for specialized surgical planning and prosthetics applications and has significant potential for development of new medical applications.

Keywords

Rapid prototyping Patient care Prostheses and implants Medical education Computer-assisted image processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kido T, Kurata A, Higashino H, Sugawara Y, Okayama H, Higaki J, Anno H, Katada K, Mori S, Tanada S, Endo M, Mochizuki T (2007) Cardiac imaging using 256-detector row four-dimensional CT: preliminary clinical report. Radiat Med 25: 38–44CrossRefPubMedGoogle Scholar
  2. 2.
    Meaney J, Goyen M (2007) Recent advances in contrast-enhanced magnetic resonance angiography. Eur Radiol 17(Suppl 2): B2–B6PubMedGoogle Scholar
  3. 3.
    Doi K (2006) Diagnostic imaging over the last 50 years: research and development in medical imaging science and technology. Phys Med Biol 51: R5–R27CrossRefPubMedGoogle Scholar
  4. 4.
    Kirchgeorg M, Prokop M (1998) Increasing spiral CT benefits with postprocessing applications. Eur J Radiol 28: 39–54CrossRefPubMedGoogle Scholar
  5. 5.
    von Tengg-Kobligk H, Weber T, Rengier F, Kotelis D, Geisbusch P, Bockler D, Schumacher H, Ley S (2008) Imaging modalities for the thoracic aorta. J Cardiovasc Surg(Torino) 49: 429–447Google Scholar
  6. 6.
    McGurk M, Amis A, Potamianos P, Goodger N (1997) Rapid prototyping techniques for anatomical modelling in medicine. Ann R Coll Surg Engl 79: 169–174PubMedGoogle Scholar
  7. 7.
    Mahesh M (2002) Search for isotropic resolution in CT from conventional through multiple-row detector. Radiographics 22: 949–962PubMedGoogle Scholar
  8. 8.
    Rengier F, Weber TF, Giesel FL, Böckler D, Kauczor H, von Tengg-Kobligk H (2009) Centerline analysis of aortic CT angiographic examinations: benefits and limitations. AJR Am J Roentgenol 192: W255–W263CrossRefPubMedGoogle Scholar
  9. 9.
    Frakes DH, Smith MJT, Parks J, Sharma S, Fogel SM, Yoganathan AP (2005) New techniques for the reconstruction of complex vascular anatomies from MRI images. J Cardiovasc Magn Reson 7: 425–432CrossRefPubMedGoogle Scholar
  10. 10.
    Hahn H, Millar W, Klinghammer O, Durkin M, Tulipano P, Peitgen H (2004) A reliable and efficient method for cerebral ventricular volumetry in pediatric neuroimaging. Methods Inf Med 43: 376–382PubMedGoogle Scholar
  11. 11.
    Peltola SM, Melchels FPW, Grijpma DW, Kellomäki M (2008) A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 40: 268–280CrossRefPubMedGoogle Scholar
  12. 12.
    Boland T, Xu T, Damon B, Cui X (2006) Application of inkjet printing to tissue engineering. Biotechnol J 1: 910–917CrossRefPubMedGoogle Scholar
  13. 13.
    Campbell PG, Weiss LE (2007) Tissue engineering with the aid of inkjet printers. Expert Opin Biol Ther 7: 1123–1127CrossRefPubMedGoogle Scholar
  14. 14.
    Elgalal M, Kozakiewicz M, Olszycki M, Walkowiak B, Stefanczyk L (2009) Custom implant design and surgical pre-planning using rapid prototyping and anatomical models for the repair of orbital floor fractures. Eur Radiol 19(Suppl 1): S397Google Scholar
  15. 15.
    D’Urso P, Earwaker W, Barker T, Redmond M, Thompson R, Effeney D, Tomlinson F (2000) Custom cranioplasty using stereolithography and acrylic. Br J Plast Surg 53: 200–204CrossRefPubMedGoogle Scholar
  16. 16.
    Faber J, Berto P, Quaresma M (2006) Rapid prototyping as a tool for diagnosis and treatment planning for maxillary canine impaction. Am J Orthod Dentofacial Orthop 129: 583–589CrossRefPubMedGoogle Scholar
  17. 17.
    Mavili M, Canter H, Saglam-Aydinatay B, Kamaci S, Kocadereli I (2007) Use of three-dimensional medical modeling methods for precise planning of orthognathic surgery. J Craniofac Surg 18: 740–747CrossRefPubMedGoogle Scholar
  18. 18.
    Muller A, Krishnan K, Uhl E, Mast G (2003) The application of rapid prototyping techniques in cranial reconstruction and preoperative planning in neurosurgery. J Craniofac Surg 14: 899–914CrossRefPubMedGoogle Scholar
  19. 19.
    Poukens J, Haex J, Riediger D (2003) The use of rapid prototyping in the preoperative planning of distraction osteogenesis of the cranio-maxillofacial skeleton. Comput Aided Surg 8: 146–154CrossRefPubMedGoogle Scholar
  20. 20.
    Wagner J, Baack B, Brown G, Kelly J (2004) Rapid 3-dimensional prototyping for surgical repair of maxillofacial fractures: a technical note. J Oral Maxillofac Surg 62: 898–901CrossRefPubMedGoogle Scholar
  21. 21.
    Guarino J, Tennyson S, McCain G, Bond L, Shea K, King H (2007) Rapid prototyping technology for surgeries of the pediatric spine and pelvis: benefits analysis. J Pediatr Orthop 27: 955–960PubMedGoogle Scholar
  22. 22.
    Hurson C, Tansey A, O’Donnchadha B, Nicholson P, Rice J, McElwain J (2007) Rapid prototyping in the assessment, classification and preoperative planning of acetabular fractures. Injury 38: 1158–1162CrossRefPubMedGoogle Scholar
  23. 23.
    Wurm G, Tomancok B, Pogady P, Holl K, Trenkler J (2004) Cerebrovascular stereolithographic biomodeling for aneurysm surgery. Technical note. J Neurosurg 100: 139–145CrossRefPubMedGoogle Scholar
  24. 24.
    Giesel FL, Hart AR, Hahn HK, Wignall E, Rengier F, Talanow R, Wilkinson ID, Zechmann CM, Weber M, Kauczor HU, Essig M, Griffiths PD (2009) 3D reconstructions of the cerebral ventricles and volume quantification in children with brain malformations. Acad Radiol 16: 610–617CrossRefPubMedGoogle Scholar
  25. 25.
    Paiva W, Amorim R, Bezerra D, Masini M (2007) Application of the stereolithography technique in complex spine surgery. Arq Neuropsiquiatr 65: 443–445PubMedGoogle Scholar
  26. 26.
    Armillotta A, Bonhoeffer P, Dubini G, Ferragina S, Migliavacca F, Sala G, Schievano S (2007) Use of rapid prototyping models in the planning of percutaneous pulmonary valved stent implantation. Proc Inst Mech Eng H 221: 407–416CrossRefPubMedGoogle Scholar
  27. 27.
    Kim MS, Hansgen AR, Wink O, Quaife RA, Carroll JD (2008) Rapid prototyping: a new tool in understanding and treating structural heart disease. Circulation 117: 2388–2394CrossRefPubMedGoogle Scholar
  28. 28.
    Hiramatsu H, Yamaguchi H, Nimi S, Ono H (2004) Rapid prototyping of the larynx for laryngeal frame work surgery]. Nippon Jibiinkoka Gakkai Kaiho 107: 949–955PubMedGoogle Scholar
  29. 29.
    D’Urso P, Barker T, Earwaker W, Bruce L, Atkinson R, Lanigan M, Arvier J, Effeney D (1999) Stereolithographic biomodelling in cranio-maxillofacial surgery: a prospective trial. J Craniomaxillofac Surg 27: 30–37PubMedGoogle Scholar
  30. 30.
    Kalet I, Wu J, Lease M, Austin-Seymour M, Brinkley J, Rosse C (1999) Anatomical information in radiation treatment planning. Proc AMIA Symp 291–295Google Scholar
  31. 31.
    Sun S, Wu C (2004) Using the full scale 3D solid anthropometric model in radiation oncology positioning and verification. Conf Proc IEEE Eng Med Biol Soc 5: 3432–3435PubMedGoogle Scholar
  32. 32.
    Zemnick C, Woodhouse S, Gewanter R, Raphael M, Piro J (2007) Rapid prototyping technique for creating a radiation shield. J Prosthet Dent 97: 236–241CrossRefPubMedGoogle Scholar
  33. 33.
    Singare S, Liu Y, Li D, Lu B, Wang J, He S (2008) Individually prefabricated prosthesis for maxilla reconstruction. J Prosthodont 17: 135–140PubMedGoogle Scholar
  34. 34.
    Lee M, Chang C, Ku Y (2008) New layer-based imaging and rapid prototyping techniques for computer-aided design and manufacture of custom dental restoration. J Med Eng Technol 32: 83–90CrossRefPubMedGoogle Scholar
  35. 35.
    Dai K, Yan M, Zhu Z, Sun Y (2007) Computer-aided custom-made hemipelvic prosthesis used in extensive pelvic lesions. J Arthroplasty 22: 981–986CrossRefPubMedGoogle Scholar
  36. 36.
    Harrysson O, Hosni Y, Nayfeh J (2007) Custom-designed orthopedic implants evaluated using finite element analysis of patient- specific computed tomography data: femoral-component case study. BMC Musculoskelet Disord 8: 91CrossRefPubMedGoogle Scholar
  37. 37.
    He J, Li D, Lu B, Wang Z, Tao Z (2006) Custom fabrication of composite tibial hemi-knee joint combining CAD/CAE/CAM techniques. Proc Inst Mech Eng [H] 220: 823–830Google Scholar
  38. 38.
    Wang Z, Teng Y, Li D (2004) Fabrication of custom-made artificial semi-knee joint based on rapid prototyping technique: computer-assisted design and manufacturing. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 18: 347–351PubMedGoogle Scholar
  39. 39.
    Stevens B, Yang Y, Mohandas A, Stucker B, Nguyen KT (2008) A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues. J Biomed Mater Res Part B Appl Biomater 85: 573–582CrossRefPubMedGoogle Scholar
  40. 40.
    Subburaj K, Nair C, Rajesh S, Meshram S, Ravi B (2007) Rapid development of auricular prosthesis using CAD and rapid prototyping technologies. Int J Oral Maxillofac Surg 36: 938–943CrossRefPubMedGoogle Scholar
  41. 41.
    Ciocca L, Mingucci R, Gassino G, Scotti R (2007) CAD/CAM ear model and virtual construction of the mold. J Prosthet Dent 98: 339–343CrossRefPubMedGoogle Scholar
  42. 42.
    Canstein C, Cachot P, Faust A, Stalder A, Bock J, Frydrychowicz A, Kuffer J, Hennig J, Markl M (2008) 3D MR flow analysis in realistic rapid-prototyping model systems of the thoracic aorta: comparison with in vivo data and computational fluid dynamics in identical vessel geometries. Magn Reson Med 59: 535–546CrossRefPubMedGoogle Scholar
  43. 43.
    Chung S, Son Y, Shin S, Kim S (2006) Nasal airflow during respiratory cycle. Am J Rhinol 20: 379–384CrossRefPubMedGoogle Scholar
  44. 44.
    Tek P, Chiganos T, Mohammed J, Eddington D, Fall C, Ifft P, Rousche P (2008) Rapid prototyping for neuroscience and neural engineering. J Neurosci Methods 172: 263–269CrossRefPubMedGoogle Scholar
  45. 45.
    de Zélicourt D, Pekkan K, Kitajima H, Frakes D, Yoganathan AP (2005) Single-step stereolithography of complex anatomical models for optical flow measurements. J Biomech Eng 127: 204–207CrossRefPubMedGoogle Scholar
  46. 46.
    Sulaiman A, Boussel L, Taconnet F, Serfaty J, Alsaid H, Attia C, Huet L, Douek P (2008) In vitro non-rigid life-size model of aortic arch aneurysm for endovascular prosthesis assessment. Eur J Cardiothorac Surg 33: 53–57CrossRefPubMedGoogle Scholar
  47. 47.
    Pekkan K, Dasi LP, de Zélicourt D, Sundareswaran KS, Fogel MA, Kanter KR, Yoganathan AP (2009) Hemodynamic performance of stage-2 univentricular reconstruction: Glenn versus hemi-Fontan templates. Ann Biomed Eng 37: 50–63CrossRefPubMedGoogle Scholar
  48. 48.
    Giesel F, Mehndiratta A, Von Tengg-Kobligk H, Schaeffer A, Teh K, Hoffman E, Kauczor H, van Beek E, Wild J (2009) Rapid prototyping raw models on the basis of high resolution computed tomography lung data for respiratory flow dynamics. Acad Radiol 16: 495–498CrossRefPubMedGoogle Scholar
  49. 49.
    Suzuki M, Ogawa Y, Kawano A, Hagiwara A, Yamaguchi H, Ono H (2004) Rapid prototyping of temporal bone for surgical training and medical education. Acta Otolaryngol 124: 400–402CrossRefPubMedGoogle Scholar
  50. 50.
    Knox K, Kerber C, Singel S, Bailey M, Imbesi S (2005) Rapid prototyping to create vascular replicas from CT scan data: making tools to teach, rehearse, and choose treatment strategies. Catheter Cardiovasc Interv 65: 47–53CrossRefPubMedGoogle Scholar
  51. 51.
    Bruyere F, Leroux C, Brunereau L, Lermusiaux P (2008) Rapid prototyping model for percutaneous nephrolithotomy training. J Endourol 22: 91–96CrossRefPubMedGoogle Scholar
  52. 52.
    Kalejs M, von Segesser LK (2009) Rapid prototyping of compliant human aortic roots for assessment of valved stents. Interact Cardiovasc Thorac Surg 8: 182–186CrossRefPubMedGoogle Scholar
  53. 53.
    Berman P, Sosna J (2009) Advent of 3D printing based on MDCT data. Eur Radiol 19(Suppl 1): S397Google Scholar
  54. 54.
    Taga I, Funakubo A, Fukui Y (2005) Design and development of an artificial implantable lung using multiobjective genetic algorithm: evaluation of gas exchange performance. ASAIO J 51: 92–102CrossRefPubMedGoogle Scholar
  55. 55.
    Lambrecht JT, Berndt DC, Schumacher R, Zehnder M (2009) Generation of three-dimensional prototype models based on cone beam computed tomography. Int J Comput Assist Radiol Surg 4: 175–180CrossRefPubMedGoogle Scholar

Copyright information

© CARS 2010

Authors and Affiliations

  • F. Rengier
    • 1
    • 2
  • A. Mehndiratta
    • 1
    • 3
  • H. von Tengg-Kobligk
    • 1
    • 2
  • C. M. Zechmann
    • 1
    • 4
  • R. Unterhinninghofen
    • 5
  • H.-U. Kauczor
    • 2
  • F. L. Giesel
    • 1
    • 2
    • 4
  1. 1.Department of Radiology E010German Cancer Research Center Heidelberg (dkfz)HeidelbergGermany
  2. 2.Department of Diagnostic and Interventional RadiologyUniversity Hospital HeidelbergHeidelbergGermany
  3. 3.School of Medical Science and TechnologyIndian Institute of TechnologyKharagpurIndia
  4. 4.Department of Nuclear MedicineUniversity Hospital HeidelbergHeidelbergGermany
  5. 5.Institute of Computer Science and EngineeringUniversity of KarlsruheKarlsruheGermany

Personalised recommendations