Extreme leg motion analysis of professional ballet dancers via MRI segmentation of multiple leg postures

  • Jérôme SchmidEmail author
  • Jinman Kim
  • Nadia Magnenat-Thalmann
Original Article



Professional ballet dancers are subject to constant extreme motion which is known to be at the origin of many articular disorders. To analyze their extreme motion, we exploit a unique magnetic resonance imaging (MRI) protocol, denoted as ‘dual-posture’ MRI, which scans the subject in both the normal (supine) and extreme (split) postures. However, due to inhomogeneous tissue intensities and image artifacts in these scans, coupled with unique acquisition protocol (split posture), segmentation of these scans is difficult. We present a novel algorithm that exploits the correlation between scans (bone shape invariance, appearance similarity) in automatically segmenting the dancer MRI images.


While validated segmentation algorithms are available for standard supine MRI, these algorithms cannot be applied to the split scan which exhibits a unique posture and strong inter-subject variations. In this study, the supine MRI is segmented with a deformable models method. The appearance and shape of the segmented supine models are then re-used to segment the split MRI of the same subject. Models are first registered to the split image using a novel constrained global optimization, before being refined with the deformable models technique.


Experiments with 10 dual-posture MRI datasets in the segmentation of left and right femur bones reported accurate and robust results (mean distance error: 1.39 ± 0.31 mm).


The use of segmented models from the supine posture to assist the split posture segmentation was found to be equally accurate and consistent to supine results. Our results suggest that dual-posture MRI can be efficiently and robustly segmented.


Segmentation Registration Magnetic resonance imaging Bone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pollard TCB, Gwilym SE, Carr AJ (2008) The assessment of early osteoarthritis. J Bone Joint Surg [Br] 90(4): 411–421Google Scholar
  2. 2.
    Assassi L, Charbonnier C, Schmid J, Volino P, Magnenat-Thalmann N (2009) From mri to anatomical simulation of the hip joint. Comput Anim Virtual Worlds J, Spec Issue Physiol Hum: 53–66Google Scholar
  3. 3.
    Charbonnier C, Assassi L, Volino P, Magnenat-Thalmann N (2009) Motion study of the hip joint in extreme postures. Vis Comput 25(9): 873–882CrossRefGoogle Scholar
  4. 4.
    Ganz R, Parvizi J, Beck M, Leunig M, Nötzli H, Siebenrock K (2003) Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res 417: 112–120PubMedGoogle Scholar
  5. 5.
    Pfirrmann CWA, Mengiardi B, Dora C, Kalberer F, Zanetti M, Hodler J (2006) Cam and pincer femoroacetabular impingement: Characteristic mr arthrographic findings in 50 patients. Radiology 240(3): 778–785CrossRefPubMedGoogle Scholar
  6. 6.
    Gilles B, Kolo-Christophe F, Magnenat-Thalmann N, Becker C, Duc S, Menetrey J, Hoffmeyer P (2009) MRI-based assessment of hip joint translations. J Biomech 42(9): 1201–1205CrossRefPubMedGoogle Scholar
  7. 7.
    Fripp J, Crozier S, Warfield S, Ourselin S (2007) Automatic segmentation of the bone and extraction of the bone-cartilage interface form magnetic resonance images of the knee. Phys Med Biol 52: 1617–1631CrossRefPubMedGoogle Scholar
  8. 8.
    Li W, Abram F, Beaudoin G, Berthiaume M, Pelletier J, Pelletier J (2008) Human hip joint cartilage: MRI quantitative thickness and volume measurements discriminating acetabulum and femoral head. IEEE Trans Biomed Eng 55(12): 2731–2740PubMedGoogle Scholar
  9. 9.
    Gilles B, Moccozet L, Magnenat-Thalmann N (2006) Anatomical modelling of the musculoskeletal system from mri. In: Proc. MICCAI, LNCS, vol 4190. Springer, Berlin, pp 289–296Google Scholar
  10. 10.
    Lorigo LM, Faugeras OD, Grimson WEL, Keriven R, Kikinis R (1998) Segmentation of bone in clinical knee mri using texture-based geodesic active contours. In: Proc. MICCAI, LNCS, vol 1496. Springer, London, pp 1195–1204Google Scholar
  11. 11.
    Snel J, Venema H, Grimbergen C (2002) Deformable triangular surfaces using fast 1-D radial Lagrangian dynamics-segmentation of 3-D MR and CT images of the wrist. IEEE Trans Med Imag 21: 888–903CrossRefGoogle Scholar
  12. 12.
    Hoad C, Martel A (2002) Segmentation of mr images for computer-assisted surgery of the lumbar spine. Phys Med Biol 47(19): 3503–3517CrossRefPubMedGoogle Scholar
  13. 13.
    Dalvi R, Abugharbieh R, Wilson D, Wilson D (2007) Multi-contrast mr for enhanced bone imaging and segmentation. In: Proc. EMBC, pp 5620–5623Google Scholar
  14. 14.
    Kang Y, Engelke K, Kalender W (2003) A new accurate and precise 3-d segmentation method for skeletal structures in volumetric ct data. IEEE Trans Med Imag 22(5): 586–598CrossRefGoogle Scholar
  15. 15.
    Reginster J (2002) The prevalence and burden of arthritis. Rheumatology 41(12): 3–6CrossRefPubMedGoogle Scholar
  16. 16.
    McPherson A, Kärrholm J, Pinskerova V, Sosna A, Martelli S (2005) Imaging knee position using MRI, RSA/CT and 3D digitisation. J Biomech 38(2): 263–268CrossRefPubMedGoogle Scholar
  17. 17.
    Lane NE, Buckwalter JA (2000) Exercise and osteoarthritis. Curr Opin Orthop 11(1): 62–65CrossRefGoogle Scholar
  18. 18.
    Galois L, Etienne S, Grossin L, Watrin-Pinzano A, Cournil-Henrionnet C, Damien L, Netter P, Mainard D, Gillet P (2004) Dose-response relationship for exercise on severity of experimental osteoarthritis in rats: a pilot study. Osteoarthr Cartil 12(10): 779–786CrossRefPubMedGoogle Scholar
  19. 19.
    Kress I, Siebenrock K, Werlen S, Mamisch T (2009) Sports-related alterations of the hip joint and correlation to typical findings in femuro-acetabular impingement: Mr findings in 50 elite karate fighters. In: European Congress on Radiology, vol 19, p 64Google Scholar
  20. 20.
    Schmid J, Magnenat-Thalmann N (2008) MRI bone segmentation using deformable models and shape priors. In: Proc. MICCAI, LNCS, vol 5241. Springer, Berlin, pp 119–126Google Scholar
  21. 21.
    Lamecker H, Seebaß M, Hege HC, Deuflhard P (2004) A 3d statistical shape model of the pelvic bone for segmentation. In: Proc. SPIE, vol 5370, pp 1341–1351Google Scholar
  22. 22.
    Seim H, Kainmüller D, Heller M, Lamecker H, Zachow S, Hege HC (2008) Automatic segmentation of the pelvic bones from ct data based on a statistical shape model. In: Eurographics workshop on visual computing for biomedicine, eurographics association, pp 93–100Google Scholar
  23. 23.
    Pettersson J, Knutsson H, Borga M (2006) Automatic hip bone segmentation using non-rigid registration. In: Proc. ICPR, vol 3, pp 946–949Google Scholar
  24. 24.
    Ehrhardt J, Handels H, Wegner T, Strathmann B, Plotz W, Poppl S (2000) An anatomical atlas to support the virtual planning of hip operations. Stud Health Technol Inform 77: 1226–1230PubMedGoogle Scholar
  25. 25.
    Kratky J, Kybic J (2008) Three-dimensional segmentation of bones from ct and mri using fast level sets. In Proc. SPIE, vol 6914, pp 47–57Google Scholar
  26. 26.
    Zoroofi RA, Sato Y, Nishii T, Sugano N, Yoshikawa H, Tamura S (2004) Automated segmentation of necrotic femoral head from 3d MR data. Comput Med Imag Graph 28(5): 267–278CrossRefGoogle Scholar
  27. 27.
    Scheys L, Loeckx D, Spaepen A, Suetens P, Jonkers I (2009) Atlas-based non-rigid image registration to automatically define line-of-action muscle models: a validation study. J Biomech 42(5): 565–572CrossRefPubMedGoogle Scholar
  28. 28.
    Bourgeat P, Fripp J, Stanwell P, Ramadan S, Ourselin S (2007) Mr image segmentation of the knee bone using phase information. Med Image Anal 11(4): 325–335CrossRefPubMedGoogle Scholar
  29. 29.
    Rifai H, Bloch I, Hutchinson S, Wiart J, Garnero L (2000) Segmentation of the skull in mri volumes using deformable model and taking the partial volume effect into account. Med Image Anal 4(3): 219–233CrossRefGoogle Scholar
  30. 30.
    Gilles B, Perrin R, Magnenat-Thalmann N, Valle JP (2004) Bone motion analysis from dynamic mri: acquisition and tracking. In: Proc. MICCAI, LNCS, vol 3217. Springer, Berlin, pp 942–949Google Scholar
  31. 31.
    Klein S, Staring M, Pluim PJ (2007) Evaluation of optimization methods for nonrigid medical image registration using mutual information and b-splines. IEEE Trans Image Process 16(12): 2879–2890CrossRefPubMedGoogle Scholar
  32. 32.
    Delingette H (1999) General object reconstruction based on simplex meshes. Int J Comput Vis 32(2): 111–146CrossRefGoogle Scholar
  33. 33.
    Cootes TF, Hill A, Taylor CJ, Haslam J (1993) The use of active shape models for locating structures in medical images. In: Proc. IPMI, vol 687. Springer, pp 33–47Google Scholar
  34. 34.
    Heimann T, Meinzer HP (2009) Statistical shape models for 3D medical image segmentation: a review. Med Image Anal 13(4): 543–563CrossRefPubMedGoogle Scholar
  35. 35.
    Storn R, Price K (1995) Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces. Tech. Rep. TR-95-012, International Computer Science InstituteGoogle Scholar
  36. 36.
    Nelder J, Mead R (1965) A simplex method for function minimization. Comput J 7(4): 308–313Google Scholar
  37. 37.
    Heimann T, van Ginneken B, Styner M, Arzhaeva Y, Aurich V, Bauer C, Beck A, Becker C, Beichel R, Bekes G et al (2009) Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans Med Imag 28: 1251–1265CrossRefGoogle Scholar
  38. 38.
    Barratt DC, Chan CS, Edwards PJ, Penney GP, Slomczykowski M, Carter TJ, Hawkes DJ (2008) Instantiation and registration of statistical shape models of the femur and pelvis using 3D ultrasound imaging. Med Image Anal 12(3): 358–374CrossRefPubMedGoogle Scholar
  39. 39.
    Livyatan H, Yaniv Z, Joskowicz L (2003) Gradient-based 2-D/3-D rigid registration of fluoroscopic X-ray to CT. IEEE Trans Med Imag 22(11): 1395–1406CrossRefGoogle Scholar
  40. 40.
    Zhang L, Hoffman E, Reinhardt J (2006) Atlas-driven lung lobe segmentation in volumetric X-ray CT images. IEEE Trans Med Imag 25(1): 1–16CrossRefGoogle Scholar
  41. 41.
    Cao M, Ye C, Doessel O, Liu C (2006) Spherical parameter detection based on hierarchical Hough transform. Pattern Recogn Lett 27(9): 980–986CrossRefGoogle Scholar

Copyright information

© CARS 2010

Authors and Affiliations

  • Jérôme Schmid
    • 1
    Email author
  • Jinman Kim
    • 1
  • Nadia Magnenat-Thalmann
    • 1
  1. 1.MIRALab, University of GenevaCarougeSwitzerland

Personalised recommendations