DLR MiroSurge: a versatile system for research in endoscopic telesurgery

  • Ulrich Hagn
  • R. Konietschke
  • A. Tobergte
  • M. Nickl
  • S. Jörg
  • B. Kübler
  • G. Passig
  • M. Gröger
  • F. Fröhlich
  • U. Seibold
  • L. Le-Tien
  • A. Albu-Schäffer
  • A. Nothhelfer
  • F. Hacker
  • M. Grebenstein
  • G. Hirzinger
Original Article

Abstract

Purpose

Research on surgical robotics demands systems for evaluating scientific approaches. Such systems can be divided into dedicated and versatile systems. Dedicated systems are designed for a single surgical task or technique, whereas versatile systems are designed to be expandable and useful in multiple surgical applications. Versatile systems are often based on industrial robots, though, and because of this, are hardly suitable for close contact with humans.

Method

To achieve a high degree of versatility the Miro robotic surgery platform (MRSP) consists of versatile components, dedicated front–ends towards surgery and configurable interfaces for the surgeon.

Results

This paper presents MiroSurge, a configuration of the MRSP that allows for bimanual endoscopic telesurgery with force feedback.

Conclusions

While the components of the MiroSurge system are shown to fulfil the rigid design requirements for robotic telesurgery with force feedback, the system remains versatile, which is supposed to be a key issue for the further development and optimisation.

Keywords

Telerobotics Versatility Force feedback 3D vision Lightweight 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hagn U, Nickl M, Jörg S, Tobergte A, Kübler B, Passig G, Gröger M, Fröhlich F, Seibold U, Konietschke R, Le-Tien L, Albu-Schäffer A, Grebenstein M, Ortmaier T, Hirzinger G (2008) DLR MIROSURGE—towards versatility in surgical robotics. In: Proceedings of CURAC 2008, Leipzig, pp 143–146Google Scholar
  2. 2.
    Green PS, Hill JW, Jensen JF, Shah A (1995) Telepresence surgery. IEEE Eng Med Biol 14(3): 324–329. doi:10.1109/51.391769 CrossRefGoogle Scholar
  3. 3.
    Phee L, Xiao D, Yuen J, Chan CF, Ho H, Thng CH, Cheng C, Ng WS (2005) Ultrasound guided robotic system for transperineal biopsy of the prostate. In: Proceedings of the IEEE international conference on robotics and automation (ICRA) 2005, Barcelona, pp 1315–1320Google Scholar
  4. 4.
    Smith-Guerin N, Nouaille L, Vievres P, Poisson G (2008) A medical robot kinematics design approach based on knowledge management. Ind Robot 35(4): 316–323. doi:10.1108/01439910810876418 CrossRefGoogle Scholar
  5. 5.
    Albers J, Schmidt T, Hassfeld S, Heid F, Vahl C (2007) Sternotomy and craniotomy by an autonomous robot: experimental evaluation on seven pigs. Zeitschrift für Herz-, Thorax- und Gefäßchirurgie. doi:10.1007/s00398-007-0599-8
  6. 6.
    Ortmaier T, Weiß H, Hagn U, Nickl M, Albu-Schäffer A, Ott C, Jörg S, Konietschke R, Le-Tien L, Hirzinger G (2006) A hands-on-robot for accurate placement of pedicle screws. In: Proceedings of the IEEE international conference on robotics and automation (ICRA) 2006, Orlando, pp 4179–4186Google Scholar
  7. 7.
    Döbele S (2008) Die transpedikuläre Bohrung: eine biomechanische und theoretische Analyse der transpedikulären Bohrung zur Auslegung eines navigationsgestützten, semi-aktiven Roboters. PhD thesis, Technische Universität München, Munich, GermanyGoogle Scholar
  8. 8.
    Konietschke R, Ortmaier T, Ott C, Hagn U, Le-Tien L, Hirzinger G (2006) Concepts of human-robot co-operation for a new medical robot. In: Proceedings of the second international workshop on human centered robotic systems (HCRS) 2006, Munich, pp 1-6Google Scholar
  9. 9.
    Hagn U, Nickl M, Jörg S, Passig G, Bahls T, Nothhelfer A, Hacker F, Le-Tien L, Albu-Schäffer A, Konietschke R, Grebenstein M, Warpup R, Haslinger R, Frommberger M, Hirzinger G (2008) The DLR MIRO—a versatile lightweight robot for surgical applications. Ind Robot 35(4). doi:10.1108/01439910810876427
  10. 10.
    Konietschke R, Ortmaier T, Weiss H, Hirzinger G (2004) Manipulability and accuracy measures for a medical robot in minimally invasive surgery. In: Lenarcic J, Galletti C (eds) On advances in robot kinematics. Kluwer, New York, pp 191–198Google Scholar
  11. 11.
    Frumento S, Michelini R, Konietschke R, Hagn U, Ortmaier T, Hirzinger G (2006) A co-robotic positioning device for carrying surgical end-effectors. In: Proceedings of ASME-ESDA 2006, Torino, pp 1–8Google Scholar
  12. 12.
    Haddadin S, Albu-Schäffer A, Hirzinger G (2007) Safety evaluation of physical human-robot interaction via crash-testing. In: Proceedings of RSS2007, Atlanta, pp 217 – 224Google Scholar
  13. 13.
    Albu-Schäffer A, Ott C, Hirzinger G (2007) A unified passivity based control framework for position, torque and impedance control of flexible joint robots. Int J Robot Res 26(1): 23–39. doi:10.1177/0278364907073776 CrossRefGoogle Scholar
  14. 14.
    Kuebler B, Seibold U, Hirzinger G (2005) Development of actuated and sensor integrated forceps for minimally invasive robotic surgery. Int J Med Robot Comput Surg. doi:10.1581/mrcas.2005.010305 and doi:10.1002/rcs.33
  15. 15.
    Seibold U, Kuebler B, Hirzinger G (2008) Prototypic force feedback instrument for minimally invasive robotic surgery. In: Bozovic V (eds) Medical robotics. I-Tech Education and Publishing, Vienna, pp 377–400Google Scholar
  16. 16.
    Wagner C, Stylopoulos N, Howe R (2002) The role of force feedback in surgery: analysis of blunt dissection. In: Proceedings of the 10th symposium on haptic interfaces for virtual environment and teleoperator systems (HAPTICS), pp 68–74, ISBN:0-7695-1489-8Google Scholar
  17. 17.
    Kitagawa M, Dokko D, Okamura AM, Bethea BT, Yuh DD (2004) Effect of sensory substitution on suture manipulation forces for surgical teleoperation. J Thorac Cardiovasc Surg 2004: 151–158Google Scholar
  18. 18.
    Abolhassani N, Patel R, Moallem M (2007) Needle insertion into soft tissue: a survey. Med Eng Phys 29(4). doi:10.1016/j.medengphy.2006.07.003
  19. 19.
    Frick TB, Marucci DD, Cartmill JA, Martin CJ, Walsh WR (2001) Resistance forces acting on suture needles. J Biomech 34(10): 1335–1340. doi:10.1016/S0021-9290(01)00099-9 CrossRefPubMedGoogle Scholar
  20. 20.
    Maurin B, Barbe L, Bayle B, Zanne P, Gangloff J, de Mathelin M, Gangi A, Soler L, Forgione A (2004) In-vivo study of forces during needle insertions. In: Buzug TM, Lueth TC (eds) Perspectives in image-guided surgery. World Scientific Pub Co, Singapore, pp 415–422Google Scholar
  21. 21.
    Okamura AM, Simone C, O’Leary MD (2004) Force modeling for needle insertion into soft tissue. IEEE Trans Biomed Eng 51(10). doi:10.1109/TBME.2004.831542
  22. 22.
    Podder TK, Sherman J, Clark DP, Messing EM, Rubens DJ, Strang JG, Liao L, Brasacchio RA, Zhang Y, Ng WS, Yu Y (2005) Evaluation of robotic needle insertion in conjunction with in vivo manual insertion in the operating room. In: Proceedings of the IEEE Roman 2005. doi:10.1109/ROMAN.2005.1513758
  23. 23.
    Wei GQ, Arbter K, Hirzinger G (1997) Real-time visual servoing for laparoscopic surgery. IEEE Eng Med Biol 16(1): 40–45. doi:10.1109/51.566151 CrossRefGoogle Scholar
  24. 24.
    Groeger M, Ortmaier T, Sepp W, Hirzinger G (2002) Tracking local motion on the beating heart. Proc SPIE 4681: 233. doi:10.1117/12.466926 CrossRefGoogle Scholar
  25. 25.
    Konietschke R (2007) Planning of Workplaces with Multiple Kinematically Redundant Robots. Ph.D. thesis, Technische Universität München, GermanyGoogle Scholar
  26. 26.
    Suppa M, Kielhofer S, Langwald J, Hacker F, Strobl KH, Hirzinger G (2007) The 3D-modeller: a multi-purpose vision platform. In: Proceedings of the IEEE international conference on robotics and automation (ICRA) 2007, Rome, doi:10.1109/ROBOT.2007.363081
  27. 27.
    Barequet G, Sharir M (1997) Partial surface and volume matching in three dimensions. IEEE Trans Pattern Anal Mach Intell(T-PAMI) 19(9): 929–948CrossRefGoogle Scholar
  28. 28.
    Le-Tien L, Albu-Schäffer A, Hirzinger G (2007) MIMO state feedback controller for a flexible joint robot with strong joint coupling. In: Proceedings of the IEEE international conference on robotics and automation (ICRA) 2007, Rome, doi:10.1109/ROBOT.2007.364065
  29. 29.
    Ott C, Albu-Schäffer A, Hirzinger G (2004) A passivity based Cartesian impedance controller for flexible joint robots–Part I: torque feedback and gravity compensation. In: Proceedings of the IEEE international conference on robotics and automation (ICRA) 2004, New Orleans, pp 2659–2665Google Scholar
  30. 30.
    Baeuml B, Hirzinger G (2006) Agile robot development (aRD): a pragmatic approach to robotic software. In: Proceedings of the IEEE international conference on intelligent robots and systems (IROS) 2006, Beijing, doi:10.1109/IROS.2006.281756
  31. 31.
    Groeger M, Sepp W, Hirzinger G (2005) Structure driven substitution of specular reflections for realtime heart surface tracking. In: Proceedings of the IEEE international conference on image processing (ICIP) 2005, Genova, 2, pp 1066–1069Google Scholar
  32. 32.
    Ortmaier T, Groeger M, Boehm DH, Falk V, Hirzinger G (2005) Motion estimation in beating heart surgery. Ieee Trans Biomed Eng 52(10): 1729–1740CrossRefPubMedGoogle Scholar
  33. 33.
    Groeger M, Hirzinger G (2006) Image stabilisation of the beating heart by local linear interpolation. Proc SPIE 6141: 61410X. doi:10.1117/12.654119 CrossRefGoogle Scholar

Copyright information

© CARS 2009

Authors and Affiliations

  • Ulrich Hagn
    • 1
  • R. Konietschke
    • 1
  • A. Tobergte
    • 1
  • M. Nickl
    • 1
  • S. Jörg
    • 1
  • B. Kübler
    • 1
  • G. Passig
    • 1
  • M. Gröger
    • 1
  • F. Fröhlich
    • 1
  • U. Seibold
    • 1
  • L. Le-Tien
    • 1
  • A. Albu-Schäffer
    • 1
  • A. Nothhelfer
    • 1
  • F. Hacker
    • 1
  • M. Grebenstein
    • 1
  • G. Hirzinger
    • 1
  1. 1.Institute of Robotics and MechatronicsDLR, German Aerospace CenterOberpfaffenhofenGermany

Personalised recommendations