Comparison of diagnostic quality and accuracy in color-coded versus gray-scale DCE-MR imaging display

  • A. Mehndiratta
  • M. V. Knopp
  • C. M. Zechmann
  • M. Owsijewitsch
  • H. von Tengg-Kobligk
  • P. Zamecnik
  • H. U. Kauczor
  • P. L. Choyke
  • F. L. Giesel
Original Article



The purpose of this study was to evaluate the diagnostic value and tumor-vascular display properties (microcirculation) of two different functional MRI post-processing and display (color and gray-scale display) techniques used in oncology.

Materials and methods

The study protocol was approved by the IRB and written informed consent was obtained from all patients. 38 dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) data sets of patients with malignant pleural-mesothelioma were acquired and post-processed. DCE-MRI was performed at 1.5 tesla with a T1-weighted 2D gradient-echo-sequence (TR 7.0 ms, TE 3.9 ms, 15 axial slices, 22 sequential repetitions), prior and during chemotherapy. Subtracting first image of contrast-enhanced-dynamic series from the last, produced gray-scale images. Color images were produced using a pharmacokinetic two-compartment model. Eight raters, blinded to diagnosis, by visual assessment of post-processed images evaluated both diagnostic quality of the images and vasculature of the tumor using a rating scale ranging from −5 to +5. The scores for vasculature were assessed by correlating with the maximum amplitude of the total-tumor-ROI for accuracy.


Color coded images were rated as significantly higher in diagnostic quality and tumor vascular score than gray-scale images (p <  0.001, 0.005). ROI signal amplitude analysis and vascular ratings on color coded images were better correlated compared to gray-scale images rating (p <  0.05).


Color coded images were shown to have higher diagnostic quality and accuracy with respect to tumor vasculature in DCE-MRI, therefore their implementation in clinical assessment and follow-up should be considered for wider application.


DCE-MRI Color-coded display Gray-scale display Angiogenesis Tumor vasculature 



Amplitude (a.u.)


Dynamic contrast enhanced magnetic resonance imaging


Elimination rate constant (min−1)


Redistribution rate constant (min−1)


Region of interest


Total-tumor-region of interest


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sharples M, Jeffery NP, du Boulay B, Teather BA, Teather D, du Boulay GH (2000) Structured computer-based training in the interpretation of neuroradiological images. Int J Med Inform 60: 263–280. doi:10.1016/S1386-5056(00)00101-5 PubMedCrossRefGoogle Scholar
  2. 2.
    Fuss M, Wenz F, Scholdei R et al (2000) Radiation-induced regional cerebral blood volume (rCBV) changes in normal brain and low-grade astrocytomas: quantification and time and dose-dependent occurrence. Int J Radiat Oncol Biol Phys 48: 53–58. doi:10.1016/S0360-3016(00)00590-3 PubMedCrossRefGoogle Scholar
  3. 3.
    Fink C, Ley S, Risse F et al (2005) Effect of inspiratory and expiratory breathhold on pulmonary perfusion: assessment by pulmonary perfusion magnetic resonance imaging. Invest Radiol 40: 72–79. doi:10.1097/01.rli.0000149252.42679.78 PubMedCrossRefGoogle Scholar
  4. 4.
    Kiessling F, Huber PE, Grobholz R et al (2004) Dynamic magnetic resonance tomography and proton magnetic resonance spectroscopy of prostate cancers in rats treated by radiotherapy. Invest Radiol 39: 34–44. doi:10.1097/01.rli.0000095472.37056.0b PubMedCrossRefGoogle Scholar
  5. 5.
    Giesel FL, Bischoff H, von Tengg-Kobligk H et al (2006) Dynamic contrast-enhanced MRI of malignant pleural mesothelioma: a feasibility study of noninvasive assessment, therapeutic follow-up, and possible predictor of improved outcome. Chest 129: 1570–1576. doi:10.1378/chest.129.6.1570 PubMedCrossRefGoogle Scholar
  6. 6.
    Hayes C, Padhani AR, Leach MO (2002) Assessing changes in tumour vascular function using dynamic contrast-enhanced magnetic resonance imaging. NMR Biomed 15: 154–163. doi:10.1002/nbm.756 PubMedCrossRefGoogle Scholar
  7. 7.
    Kroep JR, Peters GJ, van Moorsel CJ et al (1999) Gemcitabine-cisplatin: a schedule finding study. Ann Oncol 10: 1503–1510. doi:10.1023/A:1008339425708 PubMedCrossRefGoogle Scholar
  8. 8.
    Kayser K, Bohm G, Blum S et al (2001) Glyco- and immu- nohistochemical refinement of the differential diagnosis between mesothelioma and metastatic carcinoma and survival analysis of patients. J Pathol 193: 175–180. doi:10.1002/1096-9896(2000)9999:9999<::AID-PATH772>3.0.CO;2-T PubMedCrossRefGoogle Scholar
  9. 9.
    Butchart EG, Ashcroft T, Barnsley WC, Holden MP (1976) Pleuropneumonectomy in the management of diffuse malignant mesothelioma of the pleura. Experience with 29(patients. Thorax 31): 15–24. doi:10.1136/thx.31.1.15 Google Scholar
  10. 10.
    Knopp MV, von Tengg-Kobligk H, Choyke PL (2003) Functional magnetic resonance imaging in oncology for diagnosis and therapy monitoring. Mol Cancer Ther 2: 419–426PubMedGoogle Scholar
  11. 11.
    Brix G, Semmler W, Port R, Schad LR, Layer G, Lorenz WJ (1991) Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 15: 621–628. doi:10.1097/00004728-199107000-00018 PubMedCrossRefGoogle Scholar
  12. 12.
    Giesel FL, Choyke PL, Mehndiratta A et al (2008) Pharmacokinetic analysis of malignant pleural mesothelioma-initial results of tumor microcirculation and its correlation to microvessel density (CD-34). Acad Radiol 15: 563–570. doi:10.1016/j.acra.2007.12.014 PubMedCrossRefGoogle Scholar
  13. 13.
    Folkman J (1995) Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. N Engl J Med 333: 1757–1763. doi:10.1056/NEJM199512283332608 Google Scholar
  14. 14.
    Ogata Y, Naito H, Azuma H et al (2006) Novel display technique for reference images for visibility of temporal change on radiographs–color digital summation radiography. Radiat Med 24: 28–34. doi:10.1007/BF02489986 PubMedCrossRefGoogle Scholar
  15. 15.
    Padhani AR, Husband JE (2001) Dynamic contrast-enhanced MRI studies in oncology with an emphasis on quantification, validation and human studies. Clin Radiol 56: 607–620. doi:10.1053/crad.2001.0762 PubMedCrossRefGoogle Scholar
  16. 16.
    Knopp MV, Giesel FL, Marcos H, von Tengg-Kobligk H, Choyke P (2001) Dynamic contrast-enhanced magnetic resonance imaging in oncology. Top Magn Reson Imaging 12: 301–308. doi:10.1097/00002142-200108000-00006 PubMedCrossRefGoogle Scholar
  17. 17.
    Kuhl CK, Mielcareck P, Klaschik S et al (1999) Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions?. Radiology 211: 101–110PubMedGoogle Scholar
  18. 18.
    Weidner N, Semple JP, Welch WR, Folkman J (1991) Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N Engl J Med 324: 1–8PubMedGoogle Scholar
  19. 19.
    Fletcher BD, Hanna SL, Fairclough DL, Gronemeyer SA (1992) Pediatric musculoskeletal tumors: use of dynamic, contrast-enhanced MR imaging to monitor response to chemotherapy. Radiology 184: 243–248PubMedGoogle Scholar
  20. 20.
    Gilles R, Guinebretiere JM, Shapeero LG et al (1993) Assessment of breast cancer recurrence with contrast-enhanced subtraction MR imaging: preliminary results in 26 patients. Radiology 188: 473–478PubMedGoogle Scholar

Copyright information

© CARS 2009

Authors and Affiliations

  • A. Mehndiratta
    • 1
    • 2
  • M. V. Knopp
    • 4
  • C. M. Zechmann
    • 1
  • M. Owsijewitsch
    • 1
  • H. von Tengg-Kobligk
    • 1
  • P. Zamecnik
    • 1
  • H. U. Kauczor
    • 1
  • P. L. Choyke
    • 3
  • F. L. Giesel
    • 1
    • 3
  1. 1.Department of Radiology E 010German Cancer Research Center (DKFZ)HeidelbergGermany
  2. 2.School of Medical Science and TechnologyIndian Institute of Technology (IIT)KharagpurIndia
  3. 3.Clinical CenterNational Institutes of HealthBethesdaUSA
  4. 4.Department of RadiologyThe Ohio State UniversityColumbusUSA

Personalised recommendations