A probabilistic framework for freehand 3D ultrasound reconstruction applied to catheter ablation guidance in the left atrium

  • Aditya B. KoolwalEmail author
  • Federico Barbagli
  • Christopher R. Carlson
  • David H. Liang
Original Article



The catheter ablation procedure is a minimally invasive surgery used to treat atrial fibrillation. Difficulty visualizing the catheter inside the left atrium anatomy has led to lengthy procedure times and limited success rates. In this paper, we present a set of algorithms for reconstructing 3D ultrasound data of the left atrium in real-time, with an emphasis on automatic tissue classification for improved clarity surrounding regions of interest.


Using an intracardiac echo (ICE) ultrasound catheter, we collect 2D-ICE images of a left atrium phantom from multiple configurations and iteratively compound the acquired data into a 3D-ICE volume. We introduce two new methods for compounding overlapping US data—occupancy-likelihood and response-grid compounding—which automatically classify voxels as “occupied” or “clear,” and mitigate reconstruction artifacts caused by signal dropout. Finally, we use the results of an ICE-to-CT registration algorithm to devise a response-likelihood weighting scheme, which assigns weights to US signals based on the likelihood that they correspond to tissue-reflections.


Our algorithms successfully reconstruct a 3D-ICE volume of the left atrium with voxels classified as “occupied” or “clear,” even within difficult-to-image regions like the pulmonary vein openings. We are robust to dropout artifact that plagues a subset of the 2D-ICE images, and our weighting scheme assists in filtering out spurious data attributed to ghost-signals from multi-path reflections. By automatically classifying tissue, our algorithm precludes the need for thresholding, a process that is difficult to automate without subjective input. Our hope is to use this result towards developing 3D ultrasound segmentation algorithms in the future.


3D ultrasound Occupancy grid mapping Catheter ablation Left atrium Image guided surgery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Manzke R, Zagorchev L, d’Avila, A, Thiagalingam A, Reddy VY, Chan RC (2007) Rotational X-ray angiography: a method for intra-operative volume imaging of the left-atrium and pulmonary veins for atrial fibrillation ablation guidance. In: Proc. SPIE: medical imaging 2007: visualization and image-guided procedures, vol 6509, San Diego, pp 65,090T-1–65,090T-9Google Scholar
  2. 2.
    Thiagalingam A, Manzke R, d’Avila A, Ho I, Locke AH, Ruskin JN, Chan RC, Reddy VY (2008) Intraprocedural volume imaging of the left atrium and pulmonary veins with rotational X-ray angiography: Implications for catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol 19(3): 293–300PubMedCrossRefGoogle Scholar
  3. 3.
    Manzke R, Reddy V, Dalal S, Hanekamp A, Rasche V, Chan R (2006) Intra-operative volume imaging of the left atrium and pulmonary veins with rotational X-ray angiography. In: Medical image computing and computer-assisted intervention, Copenhagen, pp 604–611Google Scholar
  4. 4.
    Cannon J, Stoll J, Salgo I, Knowles H, Howe R, Dupont P, Marx G, del Nido P (2003) Real time 3-dimensional ultrasound for guiding surgical tasks. Comput Aided Surg 8(2): 82–90PubMedCrossRefGoogle Scholar
  5. 5.
    Linguraru MG, Vasilyev NV, Del Nido PJ, Howe RD (2007) Statistical segmentation of surgical instruments in 3-d ultrasound images. Ultrasound Med Biol 33(9): 1428–1437PubMedCrossRefGoogle Scholar
  6. 6.
    Novotny P, Stoll J, Dupont P, Howe R (2007) Real-time visual servoing of a robot using three-dimensional ultrasound. In: IEEE international conference on robotics and automation, Rome, pp 2655–2660Google Scholar
  7. 7.
    Zhang WY, Rohling RN, Pai DK (2004) Surface extraction with a three-dimensional freehand ultrasound system. Ultrasound Med Biol 30(11): 1461–1473PubMedCrossRefGoogle Scholar
  8. 8.
    Lee W, Idriss S, Wolf P, Smith S (2004) A miniaturized catheter 2-d array for real-time, 3-d intracardiac echocardiography. Ultrasonics, ferroelectrics and frequency control. IEEE Trans Ultrason Ferroelectr Freq Control 51(10): 1334–1346PubMedCrossRefGoogle Scholar
  9. 9.
    Poon TC, Rohling RN (2006) Three-dimensional extended field-of-view ultrasound. Ultrasound Med Biol 32(3): 357–369PubMedCrossRefGoogle Scholar
  10. 10.
    Knackstedt C, Franke A, Mischke K, Zarse M, Gramley F, Schimpf T, Plisiene J, Muehlenbruch G, Spuentrup E, Ernst S, Willems S, Kirchhof P, Schauerte P (2006) Semi-automated 3-dimensional intracardiac echocardiography: development and initial clinical experience of a new system to guide ablation procedures. Heart Rhythm 3(12): 1453–1459PubMedCrossRefGoogle Scholar
  11. 11.
    Solberg OV, Lindseth F, Torp H, Blake RE, Nagelhus Hernes TA (2007) Freehand 3d ultrasound reconstruction algorithms–a review. Ultrasound Med Biol 33(7): 991–1009PubMedCrossRefGoogle Scholar
  12. 12.
    Nelson T, Elvins T (1993) Visualization of 3d ultrasound data. Comput Graphics Appl IEEE 13(6): 50–57CrossRefGoogle Scholar
  13. 13.
    Sakas G, Schreyer LA, Grimm M (1995) Preprocessing and volume rendering of 3d ultrasonic data. Comput Graphics Appl IEEE 15(4): 47–54CrossRefGoogle Scholar
  14. 14.
    Elfes A (1989) Occupancy grids: A probabilistic framework for robot perception and navigation. Ph.D. thesis, Department of Computer and Electrical Engineering, Carnegie Mellon UniversityGoogle Scholar
  15. 15.
    Thrun S (2003) Robotic mapping: a survey. In: Exploring artificial intelligence in the new millennium. Morgan Kaufmann Publishers Inc, San Francisco, pp 1–35Google Scholar
  16. 16.
    Koolwal AB, Barbagli F, Carlson CR, Liang DH (2008) An incremental method for registering electroanatomic mapping data to surface mesh models of the left atrium. In: Medical image computing and computer-assisted intervention—MICCAI 2008, vol 5242. Springer, Heidelberg, pp~847–854Google Scholar
  17. 17.
    O’Neill MD, Jaïs P, Hocini M, Sacher F, Klein GJ, Clémenty J, Haïssaguerre M (2007) Catheter ablation for atrial fibrillation. Circulation 116(13): 1515–1523PubMedCrossRefGoogle Scholar
  18. 18.
    Lickfett L, Dickfeld T, Kato R, Tandri H, Vasamreddy CR, Berger R, Bluemke D, Lüderitz B, Halperin H, Calkins H (2005) Changes of pulmonary vein orifice size and location throughout the cardiac cycle: dynamic analysis using magnetic resonance cine imaging. J Cardiovasc Electrophysiol 16(6): 582–588PubMedCrossRefGoogle Scholar
  19. 19.
    Okumura Y, Henz BD, Johnson SB, Bunch TJ, O’Brien CJ, Hodge DO, Altman A, Govari A, Packer DL (2008) Three-dimensional ultrasound for image-guided mapping and intervention: methods, quantitative validation, and clinical feasibility of a novel multimodality image mapping system. Circ Arrhythmia Electrophysiol 1(2): 110–119CrossRefGoogle Scholar
  20. 20.
    Singh SM, Heist EK, Donaldson DM, Collins RM, Chevalier J, Mela T, Ruskin JN, Mansour MC (2008) Image integration using intracardiac ultrasound to guide catheter ablation of atrial fibrillation. Heart Rhythm 5(11): 1548–1555PubMedCrossRefGoogle Scholar
  21. 21.
    Fenster A, Downey D (1996) 3-d ultrasound imaging: a review. Eng Med Biol Mag IEEE 15(6): 41–51CrossRefGoogle Scholar
  22. 22.
    Forsberg F (2004) Ultrasonic biomedical technology; marketing versus clinical reality. Ultrasonics 42(1–9): 17–27PubMedCrossRefGoogle Scholar
  23. 23.
    Kim SH, Choi BI, Kim KW, Lee KH, Han JK (2003) Extended field-of-view sonography: advantages in abdominal applications. J Ultrasound Med 22(4): 385–394PubMedGoogle Scholar
  24. 24.
    Mercier L, Langø T, Lindseth F, Collins DL (2005) A review of calibration techniques for freehand 3-d ultrasound systems. Ultrasound Med Biol 31(4): 449–471PubMedCrossRefGoogle Scholar
  25. 25.
    Bushberg JT, Seibert JA, Edwin M, Leidholdt M, Boone JM (2002) The essential physics of medical imaging, 2nd edn. Lippincott Williams & Wilkins, BaltimoreGoogle Scholar
  26. 26.
    Rohling R, Gee A, Berman L (1997) Three-dimensional spatial compounding of ultrasound images. Med Image Anal 1(3): 177–193PubMedCrossRefGoogle Scholar
  27. 27.
    Howard A, Kitchen L (1996) Generating sonar maps in highly specular environments. In: Proceedings of the fourth international conference on control automation robotics and vision, pp 1870–1874Google Scholar
  28. 28.
    Martin MC, Moravec HP (1996) Robot evidence grids. Tech Rep CMU-RI-TR-96-06. The Robotics Institute, Carnegie Mellon UniversityGoogle Scholar
  29. 29.
    Smith R, Self M, Cheeseman P (1990) Estimating uncertain spatial relationships in robotics. In: Autonomous robot vehicles. Springer, New York, Inc, pp 167–193Google Scholar

Copyright information

© CARS 2009

Authors and Affiliations

  • Aditya B. Koolwal
    • 1
    Email author
  • Federico Barbagli
    • 2
    • 3
  • Christopher R. Carlson
    • 3
  • David H. Liang
    • 4
  1. 1.Department of Mechanical EngineeringStanford UniversityStanfordUSA
  2. 2.Department of Computer ScienceStanford UniversityStanfordUSA
  3. 3.Hansen Medical, Inc.Mountain ViewUSA
  4. 4.Division of Cardiovascular MedicineStanford UniversityStanfordUSA

Personalised recommendations