Advertisement

Simultaneous cutting of coupled tetrahedral and triangulated meshes and its application in orbital reconstruction

  • Marc Christian Metzger
  • Marc Gissler
  • Matthias Asal
  • Matthias Teschner
Original Article

Abstract

Introduction

Recently, advances in imaging techniques for diagnostics and associated technologies have led to an improved preoperative planning for craniomaxillofacial surgeons. In particular, the application of navigation-aided procedures for orbital reconstruction has proved to be essential. Preforming orbital implants for orbital floor reconstruction and determining overcorrection with regard to the orbital floor reconstruction could be achieved using preoperative planning. It has turned out that the computation of soft tissue cuts is an essential prerequisite for the realistic placement of implants.

Methods

We propose a simulation framework that allows for the static and dynamic cutting of soft and hard tissue representations. The framework comprises components to model tissue deformation, cutting of tissue and interaction between the physical bodies. Furthermore, volume and surface representations are decoupled which allows for an independent scaling in the complexity of the representations and, therefore, in the simulation and visualisation performance. In contrast to many other cutting approaches, our algorithm handles both representations simultaneously.

Conclusion

The framework is used to simulate the realistic insertion of a preformed orbital implant model through the soft tissue cut and the prediction of the postoperative eye bulb position. Experiments show that the framework can be used to determine overcorrection and to preform orbital implants.

Keywords

Craniomaxillofacial surgery Orbital implant Simulation framework 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hoffmann J, Cornelius CP, Groten M et al (1998) Orbital reconstruction with individually copy-milled ceramic implants. Plast Reconstr Surg 101(3): 604–612PubMedCrossRefGoogle Scholar
  2. 2.
    Burm JS, Chung CH, Oh SJ (1999) Pure orbital blowout fracture: new concepts and importance of medial orbital blowout fracture. Plast Reconstr Surg 103(7): 1839–1849PubMedCrossRefGoogle Scholar
  3. 3.
    Manson PN, Ruas EJ, Iliff NT (1987) Deep orbital reconstruction for correction of post-traumatic enophthalmos. Clin Plast Surg 14(1): 113–121PubMedGoogle Scholar
  4. 4.
    Amrith S, Saw SM, Lim TC, Lee TK (2000) Ophthalmic involvement in cranio-facial trauma. J Craniomaxillofac Surg 28(3): 140–147PubMedGoogle Scholar
  5. 5.
    Gruss JS (1985) Naso-ethmoid-orbital fractures: classification and role of primary bone grafting. Plast Reconstr Surg 75(3): 303–317PubMedGoogle Scholar
  6. 6.
    Schmelzeisen R, Husstedt H, Zumkeller M, Rittierodt M (1997) Preserving and improving the profile in primary and secondary orbital reconstruction. Mund Kiefer Gesichtschir 1(Suppl 1): S87–S89PubMedGoogle Scholar
  7. 7.
    Habal MB (1992) Bone grafting the orbital floor for posttraumatic defects. J Craniofac Surg 3(3): 175–180PubMedCrossRefGoogle Scholar
  8. 8.
    Goldberg RA, Garbutt M, Shorr N (1993) Oculoplastic uses of cranial bone grafts. Ophthalmic Surg 24(3): 190–196PubMedGoogle Scholar
  9. 9.
    Hammer B, Prein J (1993) Reconstructive surgery in the area of the orbit. Klin Monatsbl Augenheilkd 202(5): 458–459PubMedCrossRefGoogle Scholar
  10. 10.
    Howaldt HP, Zubcov A (1994) Orbital reconstruction with tabula externa for correction of post-traumatic enophthalmos. Fortschr Kiefer Gesichtschir 39: 64–66PubMedGoogle Scholar
  11. 11.
    Koppel DA, Foy RH, McCaul JA et al (2003) The reliability of “Analyze” software in measuring orbital volume utilizing CT-derived data. J Craniomaxillofac Surg 31(2): 88–91PubMedGoogle Scholar
  12. 12.
    Hammer B, Prein J (1995) Correction of post-traumatic orbital deformities: operative techniques and review of 26 patients. J Craniomaxillofac Surg 23(2): 81–90PubMedGoogle Scholar
  13. 13.
    Parsons GS, Mathog RH (1988) Orbital wall and volume relationships . Arch Otolaryngol Head Neck Surg 114(7): 743–747PubMedGoogle Scholar
  14. 14.
    Eufinger H, Wittkampf AR, Wehmoller M, Zonneveld FW (1998) Single-step fronto-orbital resection and reconstruction with individual resection template and corresponding titanium implant: a new method of computer-aided surgery. J Craniomaxillofac Surg 26(6): 373–378PubMedGoogle Scholar
  15. 15.
    Heissler E, Fischer FS, Bolouri S et al (1998) Custom-made cast titanium implants produced with CAD/CAM for the reconstruction of cranium defects. Int J Oral Maxillofac Surg 27(5): 334–338PubMedCrossRefGoogle Scholar
  16. 16.
    Hoffmann J, Cornelius CP, Groten M et al (1998) Using individually designed ceramic implants for secondary reconstruction of the bony orbit. Mund Kiefer Gesichtschir 2(Suppl 1): S98–S101PubMedCrossRefGoogle Scholar
  17. 17.
    Holck DE, Boyd EM Jr, Ng J, Mauffray RO (1999) Benefits of stereolithography in orbital reconstruction. Ophthalmology 106(6): 1214–1218PubMedCrossRefGoogle Scholar
  18. 18.
    Perry M, Banks P, Richards R et al (1998) The use of computer-generated three-dimensional models in orbital reconstruction. Br J Oral Maxillofac Surg 36(4): 275–284PubMedCrossRefGoogle Scholar
  19. 19.
    Gellrich NC, Schramm A, Hammer B et al (2002) Computer-assisted secondary reconstruction of unilateral posttraumatic orbital deformity. Plast Reconstr Surg 110(6): 1417–1429PubMedCrossRefGoogle Scholar
  20. 20.
    Schmelzeisen R, Gellrich NC, Schoen R et al (2004) Navigation-aided reconstruction of medial orbital wall and floor contour in cranio-maxillofacial reconstruction. Injury 35(10): 955–962PubMedCrossRefGoogle Scholar
  21. 21.
    Hassfeld S, Muhling J, Zoller J (1995) Intraoperative navigation in oral and maxillofacial surgery. Int J Oral Maxillofac Surg 24(1 Pt 2): 111–119PubMedCrossRefGoogle Scholar
  22. 22.
    Marmulla R, Niederdellmann H (1998) Computer-aided navigation in secondary reconstruction of post-traumatic deformities of the zygoma. J Craniomaxillofac Surg 26(1): 68–69PubMedGoogle Scholar
  23. 23.
    Watzinger F, Wanschitz F, Wagner A et al (1997) Computer-aided navigation in secondary reconstruction of post-traumatic deformities of the zygoma. J Craniomaxillofac Surg 25(4): 198–202PubMedGoogle Scholar
  24. 24.
    Wirtz CR, Knauth M, Hassfeld S et al (1998) Neuronavigation–first experiences with three different commercially available systems. Zentralbl Neurochir 59(1): 14–22PubMedGoogle Scholar
  25. 25.
    Székely G, Brechbühler C, Hutter R, Rhomberg A, Ironmonger N, Schmid P (2000) Modelling of soft tissue deformation for laparoscopic surgery simulation. J Med Image Anal 4(1): 57–66CrossRefGoogle Scholar
  26. 26.
    Harders M, Bachofen D, Bajka M, Grassi M, Heidelberger B, Sierra R, Spaelter U, Steinemann D, Teschner M, Tuchschmid S, Zátonyi J, Székely G (2008) Virtual reality based simulation of hysteroscopic interventions. Presence Teleoperators Virtual Environ 17(5): 441–462Google Scholar
  27. 27.
    Delingette H, Subsol G, Cotin S, Pignon J (1994) A craniofacial surgery testbed. INRIA, Rapport de recherge, N°2199Google Scholar
  28. 28.
    Keeve E, Girod S, Schaller S, Girod B (1996) Adaptive surface data compressions. J Signal Proces 59(2): 211–220CrossRefGoogle Scholar
  29. 29.
    Keeve E, Girod S, Girod B (1996) Computer-aided craniofacial surgery. In: Computer assisted radiology, pp 26–29Google Scholar
  30. 30.
    Keeve E, Jansen T, Krol Z, Ritter L, von Rymon-Lipinski B, Sader R, Zeilhofer H-F, Zerfass P (2001) JULIUS: an extendable software framework for surgical planning and image-guided navigation. In: Proc medical image computing and computer-assisted intervention, pp 1336–1337Google Scholar
  31. 31.
    Keeve E, Girod S, Augustin A, Binner A, Girod B (1996) Interactive craniofacial surgery simulation. In: Proc 3D image analysis and synthesis, pp 219–224Google Scholar
  32. 32.
    Bruyns C, Montgomery K (2002) Generalized interactions using virtual tools within the spring framework: Cutting. In: Medicine meets virtual reality, pp 79–85Google Scholar
  33. 33.
    Bruyns C, Senger S, Wildermuth S, Montgomery K, Boyle R (2001) Real-time interactions using virtual tools. MICCAI 1349–1351Google Scholar
  34. 34.
    Bruyns C, Montgomery K (2002) Generalized interactions using virtual tools within the spring framework: Probing, piercing, cauterizing and ablating. In: Proc medicine meets virtual reality, pp 74–78Google Scholar
  35. 35.
    Montgomery K, Bruyns C, Brown J, Sorkin S, Mazzella F, Thonier G, Tellier A, Lerman B, Menon A et al (2002) Spring: a general framework for collaborative, real-time surgical simulation. In: Westwood J(eds) Medicine meets virtual reality. IOS Press, AmsterdamGoogle Scholar
  36. 36.
    Spillmann J, Wagner M, Teschner M (2006) Robust tetrahedral meshing of triangle soups. In: Proc vision, modeling, visualization, pp 9–16Google Scholar
  37. 37.
    Müller M, Gross M (2004) Interactive virtual materials. In: Proc graphics interface, pp 239–246Google Scholar
  38. 38.
    Nienhuys H-W, van der Stappen AF (2000) Combining finite element deformation with cutting for surgery simulations. In: Proc eurographics, pp 274–277Google Scholar
  39. 39.
    Cotin S, Delingette H, Ayache N (2000) A hybrid elastic model allowing real-time cutting, deformations and force-feedback for surgery training and simulation. J Visual Comput 16(8): 437–452CrossRefGoogle Scholar
  40. 40.
    Steinemann D, Harders M, Gross M, Székely G (2006) Hybrid cutting of deformable solids. In: Proc virtual reality conferenc, pp 35–42Google Scholar
  41. 41.
    Becker M, Teschner M (2007) Robust and efficient estimation of elasticity parameters using the linear finite element method. In: Proc simulation and visualization, pp 15–28Google Scholar
  42. 42.
    Müller M, Teschner M, Gross M (2004) Physically-based simulation of objects represented by surface meshes. In: Proc computer graphics international, pp 26–33Google Scholar
  43. 43.
    Serby D, Harders M, Székely G (2001) A new approach to cutting into finite element models. In: Medical image computing and computer-assisted intervention, pp 425–433Google Scholar
  44. 44.
    Teschner M, Heidelberger B, Mueller M, Pomeranets D, Gross M (2003) Optimized spatial hashing for collision detection of deformable objects. In: Proc vision, modeling, visualization, pp 47–54Google Scholar
  45. 45.
    Heidelberger B, Teschner M, Keiser R, Mueller M, Gross M (2004) Consistent penetration depth estimation for deformable collision response. In: Proc vision, modeling, visualization, pp 339–346Google Scholar
  46. 46.
    Gissler M, Becker M, Teschner M (2006) Local constraint methods for deformable objects. In: Proc virtual reality interactions and physical simulations, pp 25–32Google Scholar
  47. 47.
    Bielser D, Maiwald VA, Gross MH (1999) Interactive cuts through three-dimensional soft tissue. J Comput Graph Forum 18(3): 31–38CrossRefGoogle Scholar

Copyright information

© CARS 2009

Authors and Affiliations

  • Marc Christian Metzger
    • 1
  • Marc Gissler
    • 2
  • Matthias Asal
    • 2
  • Matthias Teschner
    • 2
  1. 1.Department of Craniomaxillofacial SurgeryUniversity Hospital FreiburgFreiburgGermany
  2. 2.Computer Science DepartmentUniversity of FreiburgFreiburgGermany

Personalised recommendations