Advertisement

Planning and simulation of microsurgical laser bone ablation

  • Lüder Alexander KahrsEmail author
  • Jessica Burgner
  • Thomas Klenzner
  • Jörg Raczkowsky
  • Jörg Schipper
  • Heinz Wörn
Original Article

Abstract

Purpose

Laser ablation of hard tissue is not completely understood until now and not modeled for computer-assisted microsurgery. A precise planning and simulation is an essential step toward the usage of microsurgical laser bone ablation in the operating room.

Methods

Planning the volume for laser bone ablation is based on geometrical definitions. Shape and volume of the removed bone by single laser pulses were measured with a confocal microscope for modeling the microsurgical ablation. To remove the planned volume and to achieve smooth surfaces, a simulation of the laser pulse distribution is developed.

Results

The confocal measurements show a clear dependency from laser energy and resulting depth. Two-dimensional Gaussian functions are fitting in these craters. Exemplarily three ablation layers were planned, simulated, executed and verified.

Conclusions

To model laser bone ablation in microsurgery the volume and shape of each laser pulse should be known and considered in the process of ablation planning and simulation.

Keywords

CO2 laser Hard tissue ablation Ablation modeling Cochleostomy Confocal microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kahrs LA, Klenzner T, Raczkowsky J, Schipper J, Wörn H (2008) Planung und Simulation von mikrochirurgischer Laserknochenablation. In: Proceedings of the curac.08, pp 229-232Google Scholar
  2. 2.
    Lehnhardt E (1993) Intracochleäre Platzierung der Cochlea-Implant-Elektroden in soft surgery technique. HNO 41(7): 356–359PubMedGoogle Scholar
  3. 3.
    Ngan CC, Klenzner T, Raczkowsky J, Knoop H, Wiesendanger T, Körner K, Aschendorff A, Osten W, Schipper J, Wörn H (2005) A robotic approach to atraumatic cochlear implantation. Biomed Tech 50(Suppl 1): 21–22Google Scholar
  4. 4.
    Mustufa T (2005) An image-guided robotic assistant for microsurgery of the inner ear. Master thesis, Johns Hopkins UniversityGoogle Scholar
  5. 5.
    Savall J, Manrique M, Echeverria M, Ares M (2006) Micromanipulator for enhancing surgeon’s dexterity in cochlear atraumatic surgery. In: Proceedings of the IEEE engineering in medicine and biology society, pp 335–338Google Scholar
  6. 6.
    Brett PN, Taylor RP, Proops D, Coulson C, Reid A, Griffiths MV (2007) A surgical robot for cochleostomy. In: Proceedings of the IEEE engineering in medicine and biology society, pp 1229–1232Google Scholar
  7. 7.
    Hussong A, Rau T, Eilers H, Baron S, Heimann B, Leinung M, Lenarz T, Majdani O (2008) Conception and design of an automated insertion tool for cochlear implants. In: Proceedings of the IEEE engineering in medicine and biology society, pp 5593–5596Google Scholar
  8. 8.
    Labadie RF, Noble JH, Dawant BM, Balachandran R, Majdani O, Fitzpatrick JM (2008) Clinical validation of percutaneous cochlear implant surgery: initial report. Laryngoscope 118(6): 1031–1039CrossRefPubMedGoogle Scholar
  9. 9.
    Högberg L, Reinius S, Stahle S, Vogel K, Wallin G (1970) Laser microsurgery upon the inner ear and myelinated nerves. In: Vestibular function on earth and in space. Wenner-Gren Center international symposium series, vol 15, pp 159–170Google Scholar
  10. 10.
    Ohshiro T (1986) The CO2 laser as an ideal microsurgical tool. Lasers Surg Med 6: 29–37CrossRefPubMedGoogle Scholar
  11. 11.
    Jovanovic S, Schoenfeld U, Scherer H (2006) Ein-Schuss-CO2-Laser-Stapedotomie. HNO 54: 842–850CrossRefPubMedGoogle Scholar
  12. 12.
    Ilgner J, Wehner M, Lorenzen J, Bovi M, Westhofen M (2006) Morphological effects of nanosecond- and femto-second pulsed laser ablation on human middle ear ossicles. J Biomed Opt 11(014004): 1–7Google Scholar
  13. 13.
    Buzug TM, Hering P, Bongartz J, Ivanenkov M (2004) Navigation concept for image-guided laser surgery. In: Proceedings of IEEE conference on mechatronics and robotics, pp 1403–1408Google Scholar
  14. 14.
    Stopp S, Deppe H, Lueth T (2008) A new concept for navigated laser surgery. Lasers Med Sci 23(3): 261–266CrossRefPubMedGoogle Scholar
  15. 15.
    Stopp S, Svejdar D, von Kienlin E, Deppe H, Lueth TC (2008) A new approach for creating defined geometries by navigated laser ablation based on volumetric 3-D data. IEEE Trans Biomed Eng 55(7): 1872–1880CrossRefPubMedGoogle Scholar
  16. 16.
    Wörn H, Peters H, Ivanenko M, Hering P (2005) Laser based osteotomy with surgical robots. Biomed Tech 50(Supp 1): 25–26Google Scholar
  17. 17.
    Burgner J, Raczkowsky J, Wörn H (2008) Establishment of an experimental setup for robot assisted laser osteotomy with corresponding simulation environment for optimization of all relevant parameters. In: Proceedings of the curac.08, pp 147–148Google Scholar
  18. 18.
    Burgner J, Kahrs LA, Raczkowsky J, Wörn H (2009) Including parameterization of the discrete ablation process into a planning and simulation environment for robot-assisted laser osteotomy. In: Medicine meets virtual reality 17, NextMed: design for/the well being. Studies in health technology and informatics, vol 142. IOS Press, Amsterdam, pp 43–48Google Scholar
  19. 19.
    Klenzner T, Knapp FB, Schipper J, Raczkowsky J, Woern H, Kahrs LA, Werner M, Hering P (2009) High precision cochleostomy by use of a pulsed CO2 laser—an experimental approach. Cochlear Implants Int 10(S1): 58–62PubMedGoogle Scholar
  20. 20.
    Kahrs LA, Werner M, Knapp FB, Lu S-F, Raczkowsky J, Schipper J, Ivanenko M, Wörn H, Hering P, Klenzner T (2007) Video camera based navigation of a laser beam for micro surgery bone ablation at the skull base—setup and initial experiments. In: Advances in medical engineering, Springer proceedings in physics, vol 114, pp 219–223Google Scholar
  21. 21.
    Kahrs LA, Raczkowsky J, Werner M, Knapp FB, Mehrwald M, Hering P, Schipper J, Klenzner T, Wörn H (2008) Visual servoing of a laser ablation based cochleostomy. In: Proceedings of SPIE medical imaging, 69182C, pp 1–11Google Scholar
  22. 22.
    VisIt, Lawrence Livermore National Laboratory (LLNL). http://wci.llnl.gov/codes/visit/
  23. 23.
    Ivanenko M, Werner M, Afilal S, Klasing M, Hering P (2005) Ablation of hard bone tissue with pulsed CO2 lasers. Med Laser Appl 20(1): 13–23CrossRefGoogle Scholar
  24. 24.
    Ivanenko M, Werner M, Klasing M, Hering P (2006) System development and clinical studies with a scanning CO2 laser. In: Proceedings of SPIE photonics west: biomedical optics, 60840H, pp 1–6Google Scholar
  25. 25.
    Werner M, Ivanenko M, Harbecke D, Klasing M, Steigerwald H, Hering P (2007) CO2 laser milling of hard tissue. In: Proceedings of SPIE photonics west: biomedical optics, 64350E, pp 1–5Google Scholar
  26. 26.
    Bullman V (2003) Automated three-dimensional analysis of particle measurements using an optical profilometer and image analysis software. J Microsc 211(1): 95–100CrossRefPubMedGoogle Scholar
  27. 27.
    Jordan H-J, Wegner M, Tiziani H (1998) Highly accurate non-contact characterization of engineering surfaces using confocal microscopy. Meas Sci Technol 9: 1142–1151CrossRefGoogle Scholar
  28. 28.
    Birgin EG, Sobral FNC (2008) Minimizing the object dimensions in circle and sphere packing problems. Comput Oper Res 35(7): 2357–2375CrossRefGoogle Scholar
  29. 29.
    Donev A, Cisse I, Sachs D, Variano EA, Stillinger FH, Connelly R, Torquato S, Chaikin PM (2004) Improving the density of jammed disordered packings using ellipsoids. Science 303: 990–993CrossRefPubMedGoogle Scholar
  30. 30.
    Turnquist DV (2004) Vision correction with excimer lasers. In: Proceedings of the IEEE engineering in medicine and biology society, p 5120Google Scholar
  31. 31.
    Yun L, Yungqing Y, Zhen W (2003) A sphere-packing model for the optimal treatment plan. UMAP J 24(3): 339–350Google Scholar
  32. 32.
    Dexter F, Macario A, Traub RD (1999) Which algorithm for scheduling add-on elective cases maximizes operating room utilization? Use of bin packing algorithms and fuzzy constraints in operating room management. Anesthesiology 91(5): 1491–1500CrossRefPubMedGoogle Scholar
  33. 33.
    Kahrs LA, Laser bone ablation supported by image processing at human temporal bones (orig. titel: Bildverarbeitungsunterstützte Laserknochenablation am humen Felsenbein). Doctoral thesis, Universität Karlsruhe (TH), Germany (in press)Google Scholar
  34. 34.
    Pau HW, Just T, Bornitz M, Lasurashvilli N, Zahnert T (2007) Noise exposure of the inner ear during drilling a cochleostomy for cochlear implantation. Laryngoscope 117(3): 535–540CrossRefPubMedGoogle Scholar
  35. 35.
    Burgner J, Knapp FB, Kahrs LA, Raczkowsky J, Wörn H, Schipper J, Klenzner T (2009) Setup and experimental trial for robot-assisted laser cochleostomy. Accepted for Proceedings of the 23rd international congress and exhibition CARSGoogle Scholar

Copyright information

© CARS 2009

Authors and Affiliations

  • Lüder Alexander Kahrs
    • 1
    • 2
    Email author
  • Jessica Burgner
    • 1
  • Thomas Klenzner
    • 2
  • Jörg Raczkowsky
    • 1
  • Jörg Schipper
    • 2
  • Heinz Wörn
    • 1
  1. 1.Institute for Process Control and RoboticsUniversität Karlsruhe (TH)KarlsruheGermany
  2. 2.Department of Oto-Rhino-LaryngologyDüsseldorf University HospitalDüsseldorfGermany

Personalised recommendations