Advertisement

A sub-millimetric, 0.25 mN resolution fully integrated fiber-optic force-sensing tool for retinal microsurgery

  • Iulian Iordachita
  • Zhenglong Sun
  • Marcin Balicki
  • Jin U. Kang
  • Soo Jay Phee
  • James Handa
  • Peter Gehlbach
  • Russell Taylor
Open Access
Original Article

Abstract

Purpose

Retinal microsurgery requires extremely delicate manipulation of retinal tissue where tool-to-tissue interaction forces are usually below the threshold of human perception. Creating a force-sensing surgical instrument that measures the forces directly at the tool tip poses great challenges due to the interactions between the tool shaft and the sclerotomy opening.

Methods

We present the design and analysis of a force measurement device that senses distal forces interior to the sclera using 1-cm long, 160 μm diameter Fiber Bragg Grating (FBG) strain sensors embedded in a 0.5 mm diameter tool shaft. Additionally, we provide an algorithm developed to cancel the influence of environmental temperature fluctuations.

Results

The force-sensing prototype measures forces with a resolution of 0.25 mN in 2 DOF while being insensitive to temperature.

Conclusion

Sub-millinewton resolution force sensors integrated into microsurgical instruments are feasible and have potential applications in both robotic and freehand microsurgery.

Keywords

Microsurgery Force sensor Surgical instruments Computer-assisted surgery 

References

  1. 1.
    Patkin M (1977) Ergonomics applied to the practice of microsurgery. Aust NZ J Surg 47: 320–329. doi: 10.1111/j.1445-2197.1977.tb04297.x CrossRefGoogle Scholar
  2. 2.
    Gupta PK, Jensen PS, de Juan E Jr (1999) Surgical forces and tactile perception during retinal microsurgery, MICCAI’99. LNCS 1679: 1218–1225Google Scholar
  3. 3.
    Iordachita I et al (2006) Steady-hand manipulator for retinal surgery. In: Proceedings of the MICCAI medical robotics workshopGoogle Scholar
  4. 4.
    Mitchell B et al (2007) Development and application of a New steady-hand manipulator for retinal surgery. In: Proceedings of the IEEE international conference robotics & automation. Rome, pp 623–629Google Scholar
  5. 5.
    Okamura AM (2004) Methods for haptic feedback in teleoperated robot-assisted surgery. Ind Robot 31: 499–508. doi: 10.1108/01439910410566362 CrossRefGoogle Scholar
  6. 6.
    Zhou Y, Nelson BJ, Vikramaditya B (1998) Fusing force and vision feedback for micromanipulation. In: Proceedings of the IEEE international conference in robotics & automation, Leuven, Belgium, pp 1220–1225Google Scholar
  7. 7.
    Kim K, Sun Y, Voyles R, Nelson B (2007) Calibration of multi-axis MEMS force sensors using the shape-from-motion method. IEEE Sens J 7(3):. doi: 10.1109/JSEN.2006.890141
  8. 8.
    Menciassi A, Eisinberg A, Scalari G, Anticoli C, Carrozza MC, Dario P (2001) Force feedback-based microinstrument for measuring tissue properties and pulse in microsurgery. In: Proceedings of the IEEE international conference robotics & automation, Seoul, Korea (South), pp 626–631Google Scholar
  9. 9.
    Berkelman PJ, Whitcomb LL, Taylor RH, Jensen P (2003) A miniature microsurgical instrument tip force sensor for enhanced force feedback during robot-assisted manipulation. IEEE Trans Robot Autom 19(5): 917–921. doi: 10.1109/TRA.2003.817526 CrossRefGoogle Scholar
  10. 10.
    Berkelman PJ, Whitcomb LL, Taylor RH, Jensen P (2000) A miniature Instrument Tip Force Sensor for Robot/Human Cooperative Microsurgical Manipulation with Enhanced Force Feedback. In: Medical Image Computing and Computer-Assisted Interventions, Pittsburgh, pp 897–906Google Scholar
  11. 11.
    Jagtap D, Riviere CN (2004) Applied force during vitreoretinal microsurgery with handheld instruments. In: Proc 26th IEEE engineering in medicine and biology conference (EMBS), San Francisco, pp 2771–2773Google Scholar
  12. 12.
    Hill KO, Meltz G (1997) Fiber Bragg grating technology fundamentals and overview. J Lightwave Technol 15(8): 1263–1276. doi: 10.1109/50.618320 CrossRefGoogle Scholar

Copyright information

© CARS 2009

Authors and Affiliations

  • Iulian Iordachita
    • 1
    • 2
  • Zhenglong Sun
    • 2
    • 3
  • Marcin Balicki
    • 2
  • Jin U. Kang
    • 2
  • Soo Jay Phee
    • 3
  • James Handa
    • 4
  • Peter Gehlbach
    • 4
  • Russell Taylor
    • 2
  1. 1.Johns Hopkins UniversityBaltimoreUSA
  2. 2.ERC for Computer Integrated SurgeryJohns Hopkins UniversityBaltimoreUSA
  3. 3.Robotic Research CenterNanyang Technological UniversitySingaporeSingapore
  4. 4.Wilmer Eye InstituteJohns Hopkins HosptialBaltimoreUSA

Personalised recommendations