3D ultrasound-CT registration of the liver using combined landmark-intensity information

  • Thomas LangeEmail author
  • Nils Papenberg
  • Stefan Heldmann
  • Jan Modersitzki
  • Bernd Fischer
  • Hans Lamecker
  • Peter M. Schlag
Original Article



An important issue in computer-assisted surgery of the liver is a fast and reliable transfer of preoperative resection plans to the intraoperative situation. One problem is to match the planning data, derived from preoperative CT or MR images, with 3D ultrasound images of the liver, acquired during surgery. As the liver deforms significantly in the intraoperative situation non-rigid registration is necessary. This is a particularly challenging task because pre- and intraoperative image data stem from different modalities and ultrasound images are generally very noisy.


One way to overcome these problems is to incorporate prior knowledge into the registration process. We propose a method of combining anatomical landmark information with a fast non-parametric intensity registration approach. Mathematically, this leads to a constrained optimization problem. As distance measure we use the normalized gradient field which allows for multimodal image registration.


A qualitative and quantitative validation on clinical liver data sets of three different patients has been performed. We used the distance of dense corresponding points on vessel center lines for quantitative validation. The combined landmark and intensity approach improves the mean and percentage of point distances above 3 mm compared to rigid and thin-plate spline registration based only on landmarks.


The proposed algorithm offers the possibility to incorporate additional a priori knowledge—in terms of few landmarks—provided by a human expert into a non-rigid registration process.


Image Registration Portal Venous Phase Rigid Registration Landmark Pair Vessel Center Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bakalakos E, Kim J, Young D et al (1998) Determinants of survival following hepatic resection for metastatic colorectal cancer. World J Surg 22: 399–404PubMedCrossRefGoogle Scholar
  2. 2.
    Fong Y, Fortner J, Sun R et al (1999) Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. Ann Surg 230: 309–318PubMedCrossRefGoogle Scholar
  3. 3.
    Abdalla E, Barnett C, Doherty D et al (2002) Extended hepatectomy in patients with hepatobiliary malignancies with and without preoperative portal vein embolization. Arch Surg 137: 675–680PubMedCrossRefGoogle Scholar
  4. 4.
    Shirabe K, Shimada M, Gion T et al (1999) Postoperative liver failure after major hepatic resection for hepatocellular carcinoma in the modern era with special reference to remnant liver volume. J Am Coll Surg 188: 304–309PubMedCrossRefGoogle Scholar
  5. 5.
    Shoup M, Gonen M, D’Angelica M et al (2003) Volumetric analysis predicts hepatic dysfunction in patients undergoing major liver resection. J Gastrointest Surg 7: 325–330PubMedCrossRefGoogle Scholar
  6. 6.
    Vauthey J, Chaoui A, Do K et al (2000) Standardized measurement of the future liver remnant prior to extended liver resection: methodology and clinical associations. Surgery 127: 512–519PubMedCrossRefGoogle Scholar
  7. 7.
    Redaelli C, Wagner M, Krahenbuhl L et al (2002) Liver surgery in the era of tissue-preserving resections: early and late outcome in patients with primary and secondary hepatic tumors. World J Surg 26: 1126–1132PubMedCrossRefGoogle Scholar
  8. 8.
    Selle D, Preim B, Schenk A, Peitgen HO (2002) Analysis of vasculature for liver surgical planning. IEEE Trans Med Imaging 21(11): 1344–1357PubMedCrossRefGoogle Scholar
  9. 9.
    Lang H, Radtke A, Hindennach M, Schroeder T, Fruhauf NR, Malago M et al (2005) Impact of virtual tumor resection and computer-assisted risk analysis on operation planning and intraoperative strategy in major hepatic resection. Arch Surg 140(7): 629–638PubMedCrossRefGoogle Scholar
  10. 10.
    Cash DM, Miga MI, Glasgow SC, Dawant BM, Clements LW, Cao Z et al (2007) Concepts and Preliminary Data Toward the Realization of Image-guided Liver Surgery. J Gastrointest Surg 11(7): 844–859PubMedCrossRefGoogle Scholar
  11. 11.
    Birth M, Kleemann M, Hildebrand P, Bruch HP (2004) Intraoperative online navigation of dissection of the hepatical tissue—a new dimension in liver surgery. In: CARS, pp 770–774Google Scholar
  12. 12.
    Beller S, Hünerbein M, Eulenstein S, Lange T, Schlag P (2007) Feasibility of navigated resection of liver tumors using multiplanar visualization of intraoperative 3D ultrasound data. Ann Surg 246(2): 288–294PubMedCrossRefGoogle Scholar
  13. 13.
    Beller S, Hünerbein M, Lange T, Eulenstein S, Gebauer B, Schlag PM (2007) Image-guided surgery of liver metastases by 3D ultrasound-based optoelectronic navigation. Brit J Surg 94(7): 866–875PubMedCrossRefGoogle Scholar
  14. 14.
    Roche A, Pennec X, Malandain G, Ayache N (2001) Rigid registration of 3-D ultrasound with MR images: a new approach combining intensity and gradient information. IEEE Trans Med Imaging 20(10): 1038–1049PubMedCrossRefGoogle Scholar
  15. 15.
    Slomka PJ, Mandel J, Downey D, Fenster A (2001) Evaluation of voxel-based registration of 3-D power Doppler ultrasound and 3-D magnetic resonance angiographic images of carotid arteries. Ultrasound Med Biol 27(7): 945–955PubMedCrossRefGoogle Scholar
  16. 16.
    Porter BC, Rubens DJ, Strang JG, Smith J, Totterman S, Parker KJ (2001) Three-dimensional registration and fusion of ultrasound and MRI using major vessels as fiducial markers. IEEE Trans Med Imaging 20(4): 354–359PubMedCrossRefGoogle Scholar
  17. 17.
    Penney GP, Blackall JM, Hamady MS, Sabharwal T, Adam A, Hawkes DJ (2004) Registration of freehand 3D ultrasound and magnetic resonance liver images. Med Image Anal 8(1): 81–91PubMedCrossRefGoogle Scholar
  18. 18.
    Lange T, Eulenstein S, Hünerbein M, Schlag PM (2003) Vessel-based non-rigid registration of MR/CT and 3D ultrasound for navigation in liver surgery. Comput Aided Surg 8(5): 228–240PubMedCrossRefGoogle Scholar
  19. 19.
    Lange T, Eulenstein S, Hünerbein M, Lamecker H, Schlag P (2004) Augmenting intraoperative 3D ultrasound with preoperative models for navigation in liver surgery. In: Barillot C, Haynor D, Hellier P (eds) Medical image computing and computer-assisted intervention. Lecture notes in computer science, vol 3217. Springer, Berlin, pp 534–541Google Scholar
  20. 20.
    Reinertsen I, Lindseth F, Unsgaard G, Collins D (2007) Clinical validation of vessel-based registration for correction of brain-shift. Med Image Anal (in press)Google Scholar
  21. 21.
    Reinertsen I, Descoteaux M, Siddiqi K, Collins D (2007) Validation of vessel-based registration for correction of brain shift. Med Image Anal 11(4): 374–388PubMedCrossRefGoogle Scholar
  22. 22.
    Aylward SR, Jomier J, Weeks S, Bullitt E (2003) Registration and analysis of vascular images. Int J Comput Vision 55(2–3): 123–138CrossRefGoogle Scholar
  23. 23.
    Lange T, Lamecker H, Hünerbein M, Eulenstein S, Beller S, Schlag P et al (2007) A distance measure for non-rigid registration of geometrical models to intensity data. In: Lemke H et al (eds) CARS, vol 2 (Supp 1) of International Journal of Computer Assisted Radiology and Surgery. Springer, Berlin, pp 204–206Google Scholar
  24. 24.
    Haber E, Modersitzki J (2004) Numerical methods for volume preserving image registration. Inverse Probl 20: 1621–1638CrossRefGoogle Scholar
  25. 25.
    Modersitzki J (2007) Image registration with local rigidity constraints. In: Bildverarbeitung für die Medizin, pp 444–448Google Scholar
  26. 26.
    Gobbi D, Comeau R, Peters T (2000) Ultrasound/mri overlay with image warping for neurosurgery. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI). Springer, Berlin, pp 106–114Google Scholar
  27. 27.
    Bookstein FL (1989) Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans Pattern Anal Mach Intell 11(6): 567–585CrossRefGoogle Scholar
  28. 28.
    Rohr K (2001) Landmark-based image analysis. Springer, BerlinGoogle Scholar
  29. 29.
    Modersitzki J (2004) Numerical methods for image registration. Oxford University Press, OxfordGoogle Scholar
  30. 30.
    Davis MH, Khotanzad A, Flaming DP, Harms SE (1997) A physics-based coordinate transformation for 3-D image matching. IEEE Trans Med Imaging 16(3): 317–328PubMedCrossRefGoogle Scholar
  31. 31.
    Kohlrausch J, Rohr K, Stiehl HS (2005) A new class of elastic body splines for nonrigid registration of medical images. J Math Imaging Vis 23: 253–280CrossRefGoogle Scholar
  32. 32.
    Rohr K, Stiehl H, Sprengel R, Buzug T, Weese J, Kuhn M (2001) Landmark-based elastic registration using approximating thin-plate splines. IEEE Trans Med Imag 20(6): 526–534CrossRefGoogle Scholar
  33. 33.
    Wörz S, Rohr K (2006) Physics-based elastic image registration using splines and including landmark localization uncertainties. In: MICCAI (2), pp 678–685Google Scholar
  34. 34.
    Papenberg N, Lange T, Modersitzki J, Schlag PM, Fischer B (2008) Image registration for CT and intra-operative ultrasound data of the liver. In: SPIE Medical imaging: visualization, image-guided procedures, and modeling, vol 6918 (accepted)Google Scholar
  35. 35.
    Fischer B, Modersitzki J (2003) Combining landmarks and intensity driven registrations. In: PAMM Proceedings in Applied Mathematics and Mechanics. vol 3, pp 32–35Google Scholar
  36. 36.
    Fischer B, Modersitzki J (2003) Combination of automatic non-rigid and landmark based registration: the best of both worlds. In: Sonka M, Fitzpatrick J (eds) Medical imaging 2003: image processing. Proceedings of the SPIE 5032, vol 5032, pp 1037–1048Google Scholar
  37. 37.
    Haber E, Modersitzki J (2007) Intensity gradient based registration and fusion of multi-modal images. Methods Inf Med 46(3): 292–299PubMedGoogle Scholar
  38. 38.
    Fischer B, Modersitzki J (2003) FLIRT: a flexible image registration toolbox. In: Gee J, Maintz J, Vannier M (eds) 2nd International Workshop on Biomedical Image Registration 2003, vol 2717. Springer, Berlin, pp 261–270Google Scholar
  39. 39.
    Papenberg N, Schumacher H, Heldmann S, Wirtz S, Bommersheim S, Ens K et al (2007) A fast and flexible image registration toolbox—design and implementation of the general approach. Bildverarbeitung für die Medizin 2007. Informatik Aktuell, pp 106–110Google Scholar
  40. 40.
    Broit C (1981) Optimal registration of deformed images. Department of Computer and Information Science, University of PennsylvaniaGoogle Scholar
  41. 41.
    Haber E, Modersitzki J (2006) A multilevel method for image registration. SIAM J Sci Comput 27(5): 1594–1607CrossRefGoogle Scholar
  42. 42.
    Modersitzki J (2008) FLIRT with rigidity—image registration with a local non-rigidity penalty. Int J Comput Vis 76(2): 153–163CrossRefGoogle Scholar
  43. 43.
    Wahba G (1990) Spline models for observational data. SIAM, PhiladelphiaGoogle Scholar
  44. 44.
    Nocedal J, Wright SJ (1999) Numerical optimization. Springer, BerlinGoogle Scholar
  45. 45.
    Lange T, Wenckebach T, Lamecker H, Seebass M, Hünerbein M, Eulenstein S et al (2005) Registration of different phases of constrast-enhanced CT/MRI data for computer-assisted liver surgery planning: Evaluation of state-of-the-art methods. Int J Med Robot Comput Assist Surg 1(3): 6–20CrossRefGoogle Scholar
  46. 46.
    Christensen G, Geng X, Kuhl J, Bruss J, Grabowski T, Pirwani I et al (2006) Introduction to the non-rigid image registration evaluation project (NIREP). In: WBIR. Lecture notes in computer science, vol 4057. Springer, Berlin, pp 128–135Google Scholar
  47. 47.
    Lange T, Lamecker H, Hünerbein M, Eulenstein S, Beller S, Schlag PM (2008) Validation metrics for non-rigid registration of medical images containing vessel trees. In: Bildverarbeitung für die Medizin (BVM), pp 82–86Google Scholar

Copyright information

© CARS 2008

Authors and Affiliations

  • Thomas Lange
    • 1
    Email author
  • Nils Papenberg
    • 2
  • Stefan Heldmann
    • 2
  • Jan Modersitzki
    • 2
  • Bernd Fischer
    • 2
  • Hans Lamecker
    • 3
  • Peter M. Schlag
    • 1
  1. 1.Charité Comprehensive Cancer Center, CharitéUniversitätsmedizin BerlinBerlinGermany
  2. 2.Institute of MathematicsUniversity of LübeckLübeckGermany
  3. 3.Zuse Institute BerlinBerlinGermany

Personalised recommendations