A method to analyze the evolution of malignant gliomas using MRI

  • Maria Ida Iacono
  • Katia Passera
  • Lorenzo Magrassi
  • Luca Mainardi
  • Stefano Bastianello
  • Paolo Lago
Original Article



To introduce a novel approach for the monitoring of glioma evolution by the extraction of mathematical parameters from follow-up MRI.

Material and methods

The method consists of the registration of follow-up MR images and the analysis of the deformation field. The registration was performed through an affine transformation followed by a non-rigid registration using free-form deformations (FFDs). A subsequent analysis of the transformation non-linear component is then performed by using the jacobian operator in order to extract information related to tumor evolution. In order to test the algorithm’s performance two different validations were performed: (a) a numerical validation utilizing both physical and digital phantoms, (b) a clinical validation using neurosurgeon clinical judgements.


Quantitative validation showed that the jacobian describes the volumetric variations of the physical phantom with an error of 5%. Furthermore, simulations with a digital phantom provided an estimation of the error introduced by registration (6.4%). Clinical validation provided good clinical scores: the score evaluating the correspondence between extracted variables and patient evolution was 4.37  ±  0.89 for the deformation field and 4.43  ±  0.82 for the jacobian image (top score: 5).


The novel approach leads to an objective and quantitative description of tumor evolution. Therefore, it could be valuable for planning interventions and/or treatments.


Computer-assisted image processing Deformation field Jacobian operator Follow-up studies 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Quigley MR, Post C, Ehrlich G (2007) Some speculation on the origin of glioblastoma. Neurosurg Rev 30(1): 16–20PubMedCrossRefGoogle Scholar
  2. 2.
    Debnam JM, Ketonen L, Hamberg LM, Hunter GJ (2007) Current techniques used for the radiologic assessment of intracranial neoplasms. Arch Pathol Lab Med 131(2): 252–260PubMedGoogle Scholar
  3. 3.
    Henson JW, Gaviani P, Gonzalez RG (2005) MRI in treatment of adult gliomas. Lancet Oncol 6(3): 167–175PubMedCrossRefGoogle Scholar
  4. 4.
    Patriarche J, Erickson B (2004) A Review of the Automated Detection of Change in Serial Imaging Studies of the Brain. J Digit Imaging 17: 158–174PubMedCrossRefGoogle Scholar
  5. 5.
    Padhani AR, Ollivier L (2001) The RECIST (response evaluation criteria in solid tumors) criteria: implications for diagnostic radiologists. Br J Radiol 74: 983–986PubMedGoogle Scholar
  6. 6.
    Clark MC, Hall LO, Goldgof DB, Velthuizen R, Murtagh FR, Silbiger MS (1998) Automatic tumor segmentation using knowledge-based techniques. IEEE Trans Medical Imaging 17(2): 187–201CrossRefGoogle Scholar
  7. 7.
    Clarke LP, Velthuizen RP, Camacho MA et al (1995) MRI Segmentation: methods and applications. Magn Reson Imaging 13: 343–362PubMedCrossRefGoogle Scholar
  8. 8.
    Clarke LP, Velthuizen RP, Clark M et al (1998) MRI Measurement of brain tumor response: comparison of visual metric and automatic segmentation. Magn Reson Imaging 16: 271–279PubMedCrossRefGoogle Scholar
  9. 9.
    Ho S, Bullitt E, Gerig G (2002) Level set evolution with region competition: automatic 3-D segmentation of brain tumors. In: Proceedings of 16th International Conference on Pattern Recognition. IEEE Computer Society, Washington, pp 532–535Google Scholar
  10. 10.
    Liu J, Udupa JK, Hackney DC, Moonis G (2001) Estimation of tumor volume with fuzzy connectedness segmentation of MRI. Proc SPIE Med Imag 4322: 1455–1465CrossRefGoogle Scholar
  11. 11.
    Clatz O et al (2005) Realistic simulation of the 3D growth of brain tumors in MR images coupling diffusion with mass effect. IEEE Trans Medical Imaging 24(10): 1334–1346CrossRefGoogle Scholar
  12. 12.
    Kyriacou S et al (1999) Nonlinear elastic registration of brain images with tumor pathology using a biomechanical model. IEEE Trans Medical Imaging 18(7): 580–592CrossRefGoogle Scholar
  13. 13.
    Rey D, Subsol G, Delingette H, Ayache N (2002) Automatic detection and segmentation of evolving processes in 3D medical images: application to multiple sclerosis. Medical Image Anal 6(2): 163–179CrossRefGoogle Scholar
  14. 14.
    Denton ERE, Sonoda LI, Rueckert D, Rankin SC, Hayes C, Leach M, Hill DLG, Hawkes DJ (1999) Comparison and evaluation of rigid and non-rigid registration of breast MR images. J Comput Assist Tomogr 23: 800–805PubMedCrossRefGoogle Scholar
  15. 15.
    Rueckert D, Sonoda LI, Hayes C, Hill DLG, Leach MO, Hawkes DJ (1999) Non-rigid registration using free-form deformations: application to breast MR images. IEEE Trans Medical Imaging 18(8): 712–721CrossRefGoogle Scholar
  16. 16.
    Schnabel J, Rueckert D, Quist M, Blackall JM, Castellano Smith AD, Hartkens T, Penney GP, Hall WA, Liu H, Truwit CL, Gerritsen FA Hill DLG, Hawkes DJ (2001) A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations. In: Fourth Int Conf on Medical Image Computing and Computer-Assisted Intervention (MICCAI ’01), pp 573–581, Utrecht, NLGoogle Scholar
  17. 17.
    Maes F, Vandermeulen D, Suetens P (2003) Medical image registration using mutual information. Proc IEEE 91(10): 1699–1722CrossRefGoogle Scholar
  18. 18.
    Pluim JP, Maintz JB, Viergever MA (2003) Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imaging 22: 986–1004PubMedCrossRefGoogle Scholar
  19. 19.
    Viola P (1995) Alignment by maximization of mutual information. Ph.D. thesis, Massachusetts Institute of TechnologyGoogle Scholar
  20. 20.
    Davatzikos C, Vaillant M, Resnick S, Prince JL, Letovsky S, Bryan RN (1996) Morphological analysis of brain structures using spatial normalization. Vis Biomed Comput Lect Notes Comput Sci 1131: 355–360CrossRefGoogle Scholar
  21. 21.

Copyright information

© CARS 2008

Authors and Affiliations

  • Maria Ida Iacono
    • 1
  • Katia Passera
    • 1
  • Lorenzo Magrassi
    • 2
  • Luca Mainardi
    • 1
  • Stefano Bastianello
    • 3
  • Paolo Lago
    • 4
  1. 1.Biomedical Engineering DepartmentPolitecnico di MilanoMilanItaly
  2. 2.Neurosurgery Division, Department of SurgeryIRCCS S. Matteo, University of PaviaPaviaItaly
  3. 3.Department of NeuroradiologyIRCCS MondinoPaviaItaly
  4. 4.Clinical Engineering DepartmentIRCCS S. MatteoPaviaItaly

Personalised recommendations