Consistency of parametric registration in serial MRI studies of brain tumor progression

  • Andreas MangEmail author
  • Julia A. Schnabel
  • William R. Crum
  • Marc Modat
  • Oscar Camara-Rey
  • Christoph Palm
  • Gisele Brasil Caseiras
  • H. Rolf Jäger
  • Sébastien Ourselin
  • Thorsten M. Buzug
  • David J. Hawkes
Review Article



The consistency of parametric registration in multi-temporal magnetic resonance (MR) imaging studies was evaluated.

Materials and methods

Serial MRI scans of adult patients with a brain tumor (glioma) were aligned by parametric registration. The performance of low-order spatial alignment (6/9/12 degrees of freedom) of different 3D serial MR-weighted images is evaluated. A registration protocol for the alignment of all images to one reference coordinate system at baseline is presented. Registration results were evaluated for both, multimodal intra-timepoint and mono-modal multi-temporal registration. The latter case might present a challenge to automatic intensity-based registration algorithms due to ill-defined correspondences. The performance of our algorithm was assessed by testing the inverse registration consistency. Four different similarity measures were evaluated to assess consistency.


Careful visual inspection suggests that images are well aligned, but their consistency may be imperfect. Sub-voxel inconsistency within the brain was found for allsimilarity measures used for parametric multi-temporal registration. T1-weighted images were most reliable for establishing spatial correspondence between different timepoints.


The parametric registration algorithm is feasible for use in this application. The sub-voxel resolution mean displacement error of registration transformations demonstrates that the algorithm converges to an almost identical solution for forward and reverse registration.


Inverse registration consistency Parametric serial MR image registration Tumor disease progression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shah GD, Kesari S, Xu R et al (2006) J Neurooncol 8(1): 38–46Google Scholar
  2. 2.
    Galanis E, Buckner JC, Maurer MJ et al (2006) J Neurooncol 8(2): 145–165Google Scholar
  3. 3.
    Mang A, Crum WR, Camara-Rey O et al (2007) Adv Med Eng 114: 139–144CrossRefGoogle Scholar
  4. 4.
    Freeborough PA, Woods RP, Fox NC (1996) J Comput Assist Tomogr 20(6): 1012–1022PubMedCrossRefGoogle Scholar
  5. 5.
    Holden M, Hill DLG, Denton ERE et al (2000) IEEE Trans Med Imaging 19(2): 94–101PubMedCrossRefGoogle Scholar
  6. 6.
    Christensen GE, Johnson HJ (2003) J Electron Imaging 12: 106–117CrossRefGoogle Scholar
  7. 7.
    Christensen GE, Johnson HJ (2001) IEEE Trans Med Imaging 20(7): 568–582PubMedCrossRefGoogle Scholar
  8. 8.
    Leow AD, Huang SC, Geng A et al (2005) Inf Process Med Imaging (IPMI 2005) LNCS 3565: 493–503Google Scholar
  9. 9.
    Cachier P, Rey D (2000) Med Image Comput Assist Interv (MICCAI 2000) LNCS 1935: 472–481Google Scholar
  10. 10.
    Rogelj P, Kovačič SR (2006) Med Imag Anal 10(3): 484–493CrossRefGoogle Scholar
  11. 11.
    Avants BB, Epstein CL, Grossmann M et al (2008) Med Imag Anal 12(1): 26–41CrossRefGoogle Scholar
  12. 12.
    Studholme C, Hill DLG, Hawkes DJ (1999) Pattern Recognit 32(1): 71–86CrossRefGoogle Scholar
  13. 13.
    Jäger HR, Waldman AD, Benton C et al (2005) AJNR Am J Neuroradiol 26: 274–278PubMedGoogle Scholar
  14. 14.
    Modersitzki J (2004) Numerical methods for image registration. Oxford University Press, New YorkGoogle Scholar
  15. 15.
    Smith SM (2002) Hum Brain Mapp 17(3): 143–155PubMedCrossRefGoogle Scholar
  16. 16.
    Lemieux L, Wieshmann EC, Moran NF et al (1998) Med Imag Anal 2(3): 227–242CrossRefGoogle Scholar
  17. 17.
    Pluim JPW, Maintz JBA, Viergever MA (2003) IEEE Trans Med Imaging 22(8): 71–86CrossRefGoogle Scholar
  18. 18.
    Hajnal JV, Hill DLG, Hawkes DJ (2001) Medical Image Registration. CRC Press, Boca RatonGoogle Scholar
  19. 19.
    Roche A, Malandain G, Pennec X, Ayache N (1998) Med Image Comput Assist Interv (MICCAI 1998) LNCS 1496: 1115–1124CrossRefGoogle Scholar
  20. 20.
    Crum WR, Griffin LD, Hill DLG, Hawkes DJ (2003) Neuroimage 3: 1425–1437CrossRefGoogle Scholar
  21. 21.
    Denton ERE, Holden M, Christ E et al (2000) J Comput Assist Tomogr 24(1): 139–145PubMedCrossRefGoogle Scholar

Copyright information

© CARS 2008

Authors and Affiliations

  • Andreas Mang
    • 1
    Email author
  • Julia A. Schnabel
    • 2
    • 5
  • William R. Crum
    • 2
    • 6
  • Marc Modat
    • 2
  • Oscar Camara-Rey
    • 2
    • 7
  • Christoph Palm
    • 3
  • Gisele Brasil Caseiras
    • 4
  • H. Rolf Jäger
    • 4
  • Sébastien Ourselin
    • 2
  • Thorsten M. Buzug
    • 1
  • David J. Hawkes
    • 2
  1. 1.Institute of Medical EngineeringUniversity of LübeckLübeckGermany
  2. 2.Centre for Medical Image ComputingUniversity College LondonLondonUK
  3. 3.Institute of Neuroscience and Biophysics 3Medicine Research Centre JülichJülichGermany
  4. 4.Institute of NeuroradiologyUniversity College LondonLondonUK
  5. 5.Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK
  6. 6.Centre for Neuro Imaging Sciences, Institute of PsychiatryKing’s College LondonLondonUK
  7. 7.Center for Computational Imaging and Simulation Technologies in BiomedicineUniversitat Pompeu FabraBarcelonaSpain

Personalised recommendations