Postoperative control in deep brain stimulation of the subthalamic region: the contact membership concept

  • Simone Hemm
  • François Caire
  • Jérôme Coste
  • François Vassal
  • Christophe Nuti
  • Philippe Derost
  • Lemlih Ouchchane
  • Laurent Sarry
  • Franck Durif
  • Jean-Jacques Lemaire
Original Article

Abstract

Object

In deep brain stimulation, the anatomic positions of electrode contact centers are used as the basis for analysis. We propose a new semi-quantitative approach (contact membership concept) considering patient’s individual anatomy, contact size, and extent of involvement of STN and neighboring structures.

Materials and methods

In ten bilaterally operated and improved Parkinsonian patients, effective contact positions (contacts used for monopolar stimulation) were analyzed. The position of the contact center (classical binary approach: each center assigned, 1, or not, 0, to a given structure) and of the contact in its dimension (contact membership concept: membership degree, ordinal values from 0 to 1, assigned to each anatomic structure according to extent of involvement) were compared for the whole patient group and, individually, for each patient.

Results

The membership concept revealed that for 13 out of 20 contacts, more than one structure was involved, where the classical binary approach assigned only one structure. For both approaches lateral STN, zona incerta and H1 (Forel’s Field) were the main structures involved, but their frequencies of appearance differed.

Conclusion

The membership concept allows detailed analysis of the anatomic contact position. In the future this approach could assist in correlating anatomy and clinical results for all electrode contacts (effective ones and clinically less efficient ones).

Keywords

STN-DBS Direct targeting MRI Postoperative control Contact mapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hamani C, Richter E, Schwalb JM and Lozano AM (2005). Bilateral subthalamic nucleus stimulation for Parkinson’s disease: a systematic review of the clinical literature. Neurosurgery 56(6): 1313–1321 PubMedCrossRefGoogle Scholar
  2. 2.
    Krack P, Batir A, Chabardes S, Fraix V, Ardouin C, Koudsie A, Limousin PD, Benazzouz A, LeBas JF, Benabid AL, Pollak P and Blercom N (2003). Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 349(20): 1925–1934 PubMedCrossRefGoogle Scholar
  3. 3.
    Krause M, Fogel W, Mayer P, Kloss M and Tronnier V (2004). Chronic inhibition of the subthalamic nucleus in Parkinson’s disease. J Neurol Sci 219(1–2): 119–124 PubMedCrossRefGoogle Scholar
  4. 4.
    Rodriguez-Oroz MC, Zamarbide I, Guridi J, Palmero MR and Obeso JA (2004). Efficacy of deep brain stimulation of the subthalamic nucleus in Parkinson’s disease 4 years after surgery: double blind and open label evaluation. J Neurol Neurosurg Psychiatry 75(10): 1382–1385 PubMedCrossRefGoogle Scholar
  5. 5.
    Benazzouz A, Tai CH, Meissner W, Bioulac B, Bezard E and Gross C (2004). High-frequency stimulation of both zona incerta and subthalamic nucleus induces a similar normalization of basal ganglia metabolic activity in experimental parkinsonism. FASEB J 18(3): 528–530 PubMedGoogle Scholar
  6. 6.
    Hamel W, Fietzek U, Morsnowski A, Schrader B, Herzog J, Weinert D, Pfister G, Muller D, Volkmann J, Deuschl G and Mehdorn HM (2003). Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: evaluation of active electrode contacts. J Neurol Neurosurg Psychiatry 74(8): 1036–1046 PubMedCrossRefGoogle Scholar
  7. 7.
    Henderson JM, Pell M, O’Sullivan DJ, McCusker EA, Fung VS, Hedges P and Halliday GM (2002). Postmortem analysis of bilateral subthalamic electrode implants in Parkinson’s disease. Mov Disord 17(1): 133–137 PubMedCrossRefGoogle Scholar
  8. 8.
    Herzog J, Fietzek U, Hamel W, Morsnowski A, Steigerwald F, Schrader B, Weinert D, Pfister G, Muller D, Mehdorn HM, Deuschl G and Volkmann J (2004). Most effective stimulation site in subthalamic deep brain stimulation for Parkinson’s disease. Mov Disord 19(9): 1050–1054 PubMedCrossRefGoogle Scholar
  9. 9.
    Saint-Cyr JA, Hoque T, Pereira LC, Dostrovsky JO, Hutchison WD, Mikulis DJ, Abosch A, Sime E, Lang AE and Lozano AM (2002). Localization of clinically effective stimulating electrodes in the human subthalamic nucleus on magnetic resonance imaging. J Neurosurg 97(5): 1152–1166 PubMedGoogle Scholar
  10. 10.
    Zincone A, Landi A, Piolti R, Appollonio I, Mariani CB, Pezzoli G, Gaini SM and Frattola L (2001). Physiologic study of the subthalamic volume. Neurol Sci 22(1): 111–112 PubMedCrossRefGoogle Scholar
  11. 11.
    Duffner F, Schiffbauer H, Breit S, Friese S and Freudenstein D (2002). Relevance of image fusion for target point determination in functional neurosurgery. Acta Neurochir (Wien) 144(5): 445–451 CrossRefGoogle Scholar
  12. 12.
    Ferroli P, Franzini A, Marras C, Maccagnano E, D’Incerti L and Broggi G (2004). A simple method to assess accuracy of deep brain stimulation electrode placement: pre-operative stereotactic CT + postoperative MR image fusion. Stereotact Funct Neurosurg 82(1): 14–19 PubMedCrossRefGoogle Scholar
  13. 13.
    Lemaire JJ, Coste J, Ouchchane L, Hemm S, Derost P, Ulla M, Siadoux S, Gabrillargues J, Durif F and Chazal J (2007). MRI anatomical mapping and direct stereotactic targeting in the Subthalamic region: relationsships between biological and anatomical data in 15 Parkinsonians. Int J CARS 2: 75–85 CrossRefGoogle Scholar
  14. 14.
    Caire F, Derost P, Coste J, Bonny JM, Durif F, Frenoux E, Villeger A and Lemaire JJ (2006). Subthalamic deep brain stimulation for severe idiopathic Parkinson’s disease. Location study of the effective contacts. Neurochirurgie 52(1): 15–25 PubMedGoogle Scholar
  15. 15.
    Nowinski WL, Belov D, Pollak P and Benabid AL (2004). A probabilistic functional atlas of the human subthalamic nucleus. Neuroinformatics 2(4): 381–398 PubMedCrossRefGoogle Scholar
  16. 16.
    Starr PA, Christine CW, Theodosopoulos PV, Lindsey N, Byrd D, Mosley A and Marks WJ Jr (2002). Implantation of deep brain stimulators into the subthalamic nucleus: technical approach and magnetic resonance imaging-verified lead locations. J Neurosurg 97(2): 370–387 PubMedGoogle Scholar
  17. 17.
    Vayssière N, Vander Gaag N, Cif L, Hemm S, Verdier R, Frerebeau P and Coubes P (2004). Deep brain stimulation for dystonia confirms a somatotopic organization in the Globus Pallidus Internus. J Neurosurg 101: 181–188 PubMedGoogle Scholar
  18. 18.
    Voges J, Volkmann J, Allert N, Lehrke R, Koulousakis A, Freund HJ and Sturm V (2002). Bilateral high-frequency stimulation in the subthalamic nucleus for the treatment of Parkinson disease: correlation of therapeutic effect with anatomical electrode position. J Neurosurg 96(2): 269–279 PubMedGoogle Scholar
  19. 19.
    Zonenshayn M, Sterio D, Kelly PJ, Rezai AR, Beric A (2004) Location of the active contact within the subthalamic nucleus (STN) in the treatment of idiopathic Parkinson’s disease. Surg Neurol 62(3):216–225, discussion 225–226Google Scholar
  20. 20.
    Fahn S and Elton RL (1987). Unified Parkinson’s disease rating scale. In: Fahn, S, Marsden, CD and Goldstein, M (eds) Recent developments in Parkinson’s disease, pp 153–163. Macmillian, New York Google Scholar
  21. 21.
    Magnotta VA, Gold S, Andreasen NC, Ehrhardt JC and Yuh WT (2000). Visualization of subthalamic nuclei with cortex attenuated inversion recovery MR imaging. Neuroimage 11(4): 341–346 PubMedCrossRefGoogle Scholar
  22. 22.
    Derost P, Ouchchane L, Morand D, Ulla M, Llorca P, Barget M, Debilly B, Lemaire JJ and Durif F (2007). Is subthalamic nucleus deep brain stimulation (DBS-STN) appropriate to manage severe Parkinson disease in an elderly population. Neurology 68: 1345–1355 PubMedCrossRefGoogle Scholar
  23. 23.
    Lemaire JJ, Caire F, Bony JM, Kemeny JL, Villéger A and Chazal J (2004). Contribution of 4.7 tesla MRI in the analysis of the MRI anatomy of the human subthalamic area. Acta Neurochir (Wien) 146(8): 906–907 Google Scholar
  24. 24.
    Maintz JB and Viergever MA (1998). A survey of medical image registration. Med Image Anal 2(1): 1–36 PubMedCrossRefGoogle Scholar
  25. 25.
    Viola P, Atsumi H, Nakajima S, Kikinis R and Wells WM lll(1996). Multi-modal volume registration by maximization of mutual information. Med Image Anal 1(1): 35–51 PubMedCrossRefGoogle Scholar
  26. 26.
    Pollo C, Villemure JG, Vingerhoets F, Ghika J, Maeder P and Meuli R (2004). Magnetic resonance artifact induced by the electrode Activa 3389: an in vitro and in vivo study. Acta Neurochir (Wien) 146(2): 161–164 CrossRefGoogle Scholar
  27. 27.
    Zadeh LA (1965). Fuzzy sets. Inf Control 8: 338–353 CrossRefGoogle Scholar
  28. 28.
    Zadeh LA (1975). Fuzzy logic and approximate reasoning (in memory of Gregore Moisil). Synthèse 30: 407–428 CrossRefGoogle Scholar
  29. 29.
    Ondo WG and Bronte-Stewart H (2005). The North American survey of placement and adjustment strategies for deep brain stimulation. Stereotact Funct Neurosurg 83(4): 142–147 PubMedCrossRefGoogle Scholar
  30. 30.
    Elias WJ, Fu KM and Frysinger RC (2007). Cortical and subcortical brain shift during stereotactic procedures. J Neurosurg 107(5): 983–988 PubMedCrossRefGoogle Scholar
  31. 31.
    Miyagi Y, Shima F and Sasaki T (2007). Brain shift: an error factor during implantation of deep brain stimulation electrodes. J Neurosurg 107(5): 989–997 PubMedCrossRefGoogle Scholar
  32. 32.
    Butson CR, Cooper SE, Henderson JM and McIntyre CC (2007). Patient-specific analysis of the volume of tissue activated during deep brain stimulation. Neuroimage 34(2): 661–670 PubMedCrossRefGoogle Scholar
  33. 33.
    Hamel W, Schrader B, Weinert D, Herzog J, Volkmann J, Deuschl G, Muller D and Mehdorn HM (2002). MRI- and skull X-ray-based approaches to evaluate the position of deep brain stimulation electrode contacts—a technical note. Zentralbl Neurochir 63(2): 65–69 PubMedCrossRefGoogle Scholar
  34. 34.
    Schaltenbrand G and Bailey P (1959). Introduction to stereotaxis with an atlas of the human brain. Thieme Verlag, New York, Stuttgart Google Scholar
  35. 35.
    Wang D, Strugnell W, Cowin G, Doddrell DM and Slaughter R (2004). Geometric distortion in clinical MRI systems Part II: correction using a 3D phantom. Magn Reson Imaging 22(9): 1223–1232 PubMedCrossRefGoogle Scholar
  36. 36.
    Wang D, Strugnell W, Cowin G, Doddrell DM and Slaughter R (2004). Geometric distortion in clinical MRI systems Part I: evaluation using a 3D phantom. Magn Reson Imaging 22(9): 1211–1221 PubMedCrossRefGoogle Scholar
  37. 37.
    Vayssiere N, Hemm S, Zanca M, Picot MC, Bonafe A, Cif L, Frerebeau P and Coubes P (2000). Magnetic resonance imaging stereotactic target localization for deep brain stimulation in dystonic children. J Neurosurg 93(5): 784–790 PubMedGoogle Scholar
  38. 38.
    Lemaire JJ, Coste J, Ouchchane L, Caire F, Nuti C, Derost P, Cristini V, Gabrillargues J, Hemm S, Durif F and Chazal J (2007). Brain mapping in stereotactic surgery: a brief overview from the probabilistic targeting to the patient-based anatomic mapping. Neuroimage 37(Suppl 1): S109–S115 PubMedCrossRefGoogle Scholar
  39. 39.
    Kotter R and Wanke E (2005). Mapping brains without coordinates. Philos Trans R Soc Lond B Biol Sci 360(1456): 751–766 PubMedCrossRefGoogle Scholar
  40. 40.
    Vayssiere N, Hemm S, Cif L, Picot MC, Diakonova N, El Fertit H, Frerebeau P and Coubes P (2002). Comparison of atlas- and magnetic resonance imaging-based stereotactic targeting of the globus pallidus internus in the performance of deep brain stimulation for treatment of dystonia. J Neurosurg 96(4): 673–679 PubMedGoogle Scholar
  41. 41.
    Lanotte MM, Rizzone M, Bergamasco B, Faccani G, Melcarne A and Lopiano L (2002). Deep brain stimulation of the subthalamic nucleus: anatomical, neurophysiological, and outcome correlations with the effects of stimulation. J Neurol Neurosurg Psychiatry 72(1): 53–58 PubMedCrossRefGoogle Scholar
  42. 42.
    Parent A and Williams W (1996). Carpenter’s human neuroanatomy. A Waverly Company, Baltimore Google Scholar
  43. 43.
    Hemm S, Mennessier G, Vayssiere N, Cif L, El Fertit H and Coubes P (2005). Deep brain stimulation in movement disorders: stereotactic coregistration of two-dimensional electrical field modeling and magnetic resonance imaging. J Neurosurg 103(6): 949–955 PubMedCrossRefGoogle Scholar

Copyright information

© CARS 2008

Authors and Affiliations

  • Simone Hemm
    • 1
    • 2
  • François Caire
    • 3
  • Jérôme Coste
    • 2
  • François Vassal
    • 4
  • Christophe Nuti
    • 4
  • Philippe Derost
    • 5
  • Lemlih Ouchchane
    • 6
  • Laurent Sarry
    • 1
  • Franck Durif
    • 5
  • Jean-Jacques Lemaire
    • 1
    • 2
  1. 1.Inserm, ERI 14, Equipe de Recherche en Imagerie MédicaleClermont-FerrandFrance
  2. 2.Service de Neurochirurgie A, Hôpital Gabriel MontpiedCHU Clermont-FerrandClermont-Ferrand Cedex 1France
  3. 3.Service de Neurochirurgie, CHU LimogesHôpital DupuytrenLimogesFrance
  4. 4.Service de Neurochirurgie, CHU Saint-EtienneHôpital BellevueSaint-EtienneFrance
  5. 5.Service de Neurologie, CHU Clermont-FerrandHôpital Gabriel MontpiedClermont-FerrandFrance
  6. 6.Université Clermont-Ferrand 1, UFR Médecine, Unité de Bio Statistiques, Télématique et Traitementd’ImageClermont-FerrandFrance

Personalised recommendations