MRI anatomical mapping and direct stereotactic targeting in the subthalamic region: functional and anatomical correspondence in Parkinson’s disease

  • Jean-Jacques Lemaire
  • Jérôme Coste
  • Lemlih Ouchchane
  • Simone Hemm
  • Philippe Derost
  • Miguel Ulla
  • Séverine Siadoux
  • Jean Gabrillargues
  • Franck Durif
  • Jean Chazal
Original article

Abstract

Object Relationships between clinical effects, anatomy, and electrophysiology are not fully understood in DBS of the subthalamic region in Parkinson’s disease. We proposed an anatomic study based on direct image-guided stereotactic surgery with a multiple source data analysis.

Materials and Methods A manual anatomic mapping was realized on coronal 1.5-Tesla MRI of 15 patients. Biological data were collected under local anesthesia: the spontaneous neuron activities and the clinical efficiency and the appearance of adverse effects. They were related to relevant current values (mA), the benefit threshold (bt, minimal current leading an clear efficiency), the adverse effect threshold (at, minimal current leading an adverse effect) and the stimulation margin (sm =  at − bt); they were matched with anatomy.

Results We found consistent relationships between anatomy and biological data. The optimal stimulation parameters (low bt + high sm) were noted in the dorsolateral STN. The highest spontaneous neuron activity was found in the ventromedial STN. Dorsolateral (sensorimotor) STN seems the main DBS effector. The highest spontaneous neuron activity seems related to the anterior (rostral) ventromedial (limbic) STN.

Conclusion 1.5 Tesla images provide sufficiently detailed subthalamic anatomy for image-guided stereotactic surgery and may aid in understanding DBS mechanisms.

Keywords

Image-guided surgery STN-DBS Stereotaxy Brain mapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Erola T, Karinen P, Heikkinen E, Tuominen J, Haapaniemi T, Koivukangas J and Myllyla V (2005). Bilateral subthalamic nucleus stimulation improves health-related quality of life in parkinsonian patients. Parkinsonism Relat Disord 11(2): 89–94 PubMedCrossRefGoogle Scholar
  2. 2.
    Hamani C, Richter E, Schwalb JM and Lozano AM (2005). Bilateral subthalamic nucleus stimulation for Parkinson’s disease: a systematic review of the clinical literature. Neurosurg 56(6): 1313–1321 CrossRefGoogle Scholar
  3. 3.
    Krack P, Batir A, Van Blercom N, Chabardes S, Fraix V, Ardouin C, Koudsie A, Limousin PD, Benazzouz A, LeBas JF, Benabid AL and Pollak P (2003). Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 349(20): 1925–1934 PubMedCrossRefGoogle Scholar
  4. 4.
    Krause M, Fogel W, Mayer P, Kloss M and Tronnier V (2004). Chronic inhibition of the subthalamic nucleus in Parkinson’s disease. J Neurol Sci 219(1–2): 119–124 PubMedCrossRefGoogle Scholar
  5. 5.
    Rodriguez-Oroz MC, Zamarbide I, Guridi J, Palmero MR and Obeso JA (2004). Efficacy of deep brain stimulation of the subthalamic nucleus in parkinson’s disease 4 years after surgery: Double blind and open label evaluation. J Neurol Neurosurg Psychiatry 75(10): 1382–1385 PubMedCrossRefGoogle Scholar
  6. 6.
    Walter BL and Vitek JL (2004). Surgical treatment for Parkinson’s disease. Lancet Neurol 3(12): 719–728 PubMedCrossRefGoogle Scholar
  7. 7.
    Benazzouz A, Tai CH, Meissner W, Bioulac B, Bezard E and Gross C (2004). High-frequency stimulation of both zona incerta and subthalamic nucleus induces a similar normalization of basal ganglia metabolic activity in experimental parkinsonism. Faseb J 18(3): 528–530 PubMedGoogle Scholar
  8. 8.
    Breit S, Schulz JB and Benabid AL (2004). Deep brain stimulation. Cell Tissue Res 318(1): 275–288 PubMedCrossRefGoogle Scholar
  9. 9.
    Filali M, Hutchison WD, Palter VN, Lozano AM and Dostrovsky JO (2004). Stimulation-induced inhibition of neuronal firing in human subthalamic nucleus. Exp Brain Res 156(3): 274–281 PubMedCrossRefGoogle Scholar
  10. 10.
    Garcia L, Audin J, D’Alessandro G, Bioulac B and Hammond C (2003). Dual effect of high-frequency stimulation on subthalamic neuron activity. J Neurosci 23(25): 8743–8751 PubMedGoogle Scholar
  11. 11.
    Hashimoto T, Elder CM, Okun MS, Patrick SK and Vitek JL (2003). Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci 23(5): 1916–1923 PubMedGoogle Scholar
  12. 12.
    MacKinnon CD, Webb RM, Silberstein P, Tisch S, Asselman P, Limousin P and Rothwell JC (2005). Stimulation through electrodes implanted near the subthalamic nucleus activates projections to motor areas of cerebral cortex in patients with Parkinson’s disease. Eur J Neurosci 21(5): 1394–1402 PubMedCrossRefGoogle Scholar
  13. 13.
    Meissner W, Leblois A, Hansel D, Bioulac B, Gross CE, Benazzouz A and Boraud T (2005). Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations. Brain 128(Pt 10): 2372–2382 PubMedCrossRefGoogle Scholar
  14. 14.
    Welter ML, Houeto JL, Bonnet AM, Bejjani PB, Mesnage V, Dormont D, Navarro S, Cornu P, Agid Y and Pidoux B (2004). Effects of high-frequency stimulation on subthalamic neuronal activity in Parkinsonian patients. Arch Neurol 61(1): 89–96 PubMedCrossRefGoogle Scholar
  15. 15.
    Counelis GJ, Simuni T, Forman MS, Jaggi JL, Trojanowski JQ and Baltuch GH (2003). Bilateral subthalamic nucleus deep brain stimulation for advanced pd: Correlation of intraoperative MER and postoperative MRI with neuropathological findings. Mov Disord 18(9): 1062–1065 PubMedCrossRefGoogle Scholar
  16. 16.
    Hamel W, Fietzek U, Morsnowski A, Schrader B, Herzog J, Weinert D, Pfister G, Muller D, Volkmann J, Deuschl G and Mehdorn HM (2003). Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: Evaluation of active electrode contacts. J Neurol Neurosurg Psychiatry 74(8): 1036–1046 PubMedCrossRefGoogle Scholar
  17. 17.
    Henderson JM, Pell M, O’Sullivan DJ, McCusker EA, Fung VS, Hedges P and Halliday GM (2002). Postmortem analysis of bilateral subthalamic electrode implants in Parkinson’s disease. Mov Disord 17(1): 133–137 PubMedCrossRefGoogle Scholar
  18. 18.
    Herzog J, Fietzek U, Hamel W, Morsnowski A, Steigerwald F, Schrader B, Weinert D, Pfister G, Muller D, Mehdorn HM, Deuschl G and Volkmann J (2004). Most effective stimulation site in subthalamic deep brain stimulation for Parkinson’s disease. Mov Disord 19(9): 1050–1054 PubMedCrossRefGoogle Scholar
  19. 19.
    Saint-Cyr JA, Hoque T, Pereira LC, Dostrovsky JO, Hutchison WD, Mikulis DJ, Abosch A, Sime E, Lang AE and Lozano AM (2002). Localization of clinically effective stimulating electrodes in the human subthalamic nucleus on Magnetic Resonance Imaging. J Neurosurg 97(5): 1152–1166 PubMedGoogle Scholar
  20. 20.
    Zincone A, Landi A, Piolti R, Appollonio I, Mariani CB, Pezzoli G, Gaini SM and Frattola L (2001). Physiologic study of the subthalamic volume. Neurol Sci 22(1): 111–112 PubMedCrossRefGoogle Scholar
  21. 21.
    Derost P, Ouchchane L, Morand D, Ulla M, Lbrca PM, Barzet M, Debilly B, Lemaire JJ and Durif F (2007). Is DBS-STN appropriate to manage severe Parkinson’s disease in an elderly population?. Neurology 68: 1345–1355 PubMedCrossRefGoogle Scholar
  22. 22.
    Ulla M, Thobois S, Lemaire JJ, Schmitt A, Derost P, Broussolle E, Llorca PM and Durif F (2006). Manic behaviour induced by deep-brain stimulation in Parkinson’s disease: Evidence of substantia nigra implication?. J Neurol Neurosurg Psychiatry 77(12): 1363–1366 PubMedCrossRefGoogle Scholar
  23. 23.
    Magnotta VA, Gold S, Andreasen NC, Ehrhardt JC and Yuh WT (2000). Visualization of subthalamic nuclei with cortex attenuated inversion recovery MR imaging. Neuroimage 11(4): 341–346 PubMedCrossRefGoogle Scholar
  24. 24.
    Lemaire JJ, Caire F, Bony JM, Kemeny JL, Villéger A and Chazal J (2004). Contribution of 4.7 Tesla MRI in the analysis of the MRI anatomy of the human subthalamic area. Acta Neurochir (Wien) 146(8): 906–907 Google Scholar
  25. 25.
    Parent A (1996) Basal ganglia: In: Parent A, Carpenter’s human neuroanatomy. Williams and Wilkins, Baltimore, pp 838–843Google Scholar
  26. 26.
    Richter EO, Hoque T, Halliday W, Lozano AM and Saint-Cyr JA (2004). Determining the position and size of the subthalamic nucleus based on magnetic resonance imaging results in patients with advanced Parkinson’s disease. J Neurosurg 100(3): 541–546 PubMedGoogle Scholar
  27. 27.
    Wang D, Strugnell W, Cowin G, Doddrell DM and Slaughter R (2004). Geometric distortion in clinical MRI systems part ii: Correction using a 3d phantom. Magn Reson Imaging 22(9): 1223–1232 PubMedCrossRefGoogle Scholar
  28. 28.
    Wang D, Strugnell W, Cowin G, Doddrell DM and Slaughter R (2004). Geometric distortion in clinical MRI systems part i: Evaluation using a 3d phantom. Magn Reson Imaging 22(9): 1211–1221 PubMedCrossRefGoogle Scholar
  29. 29.
    Ferroli P, Franzini A, Marras C, Maccagnano E, D’Incerti L and Broggi G (2004). A simple method to assess accuracy of deep brain stimulation electrode placement: pre-operative stereotactic CT + postoperative MR image fusion. Stereotact Funct Neurosurg 82(1): 14–19 PubMedCrossRefGoogle Scholar
  30. 30.
    Pollo C, Villemure JG, Vingerhoets F, Ghika J, Maeder P and Meuli R (2004). Magnetic resonance artifact induced by the electrode Activa 3389: An in vitro and in vivo study. Acta Neurochir (Wien) 146(2): 161–164 CrossRefGoogle Scholar
  31. 31.
    Mitrofanis J (2005). Some certainty for the “Zone of uncertainty”? Exploring the function of the zona incerta. Neuroscience 130(1): 1–15 PubMedCrossRefGoogle Scholar
  32. 32.
    Parent M and Parent A (2004). The pallidofugal motor fiber system in primates. Parkinsonism Relat Disord 10(4): 203–211 PubMedCrossRefGoogle Scholar
  33. 33.
    Hamani C, Richter EO, Andrade-Souza Y, Hutchison W, Saint-Cyr JA and Lozano AM (2005). Correspondence of microelectrode mapping with magnetic resonance imaging for subthalamic nucleus procedures. Surg Neurol 63(3): 249–253 PubMedCrossRefGoogle Scholar
  34. 34.
    Pralong E, Villemure JG, Bloch J, Pollo C, Daniels RT, Ghika J, Vingerhoets F, Tetreault MH and Debatisse D (2004). Quality index for the quantification of the information recorded along standard microelectrode tracks to the subthalamic nucleus in parkinsonian patients. Neurophysiol Clin 34(5): 209–215 PubMedCrossRefGoogle Scholar
  35. 35.
    Baker KB, Boulis NM, Rezai AL and Montgomery EB Jr (2004). Target selection using microeletrode recording. In: Israel, Z and Burchiel, KJ (eds) Microelectrode recording in movement disorder surgery, pp 138–151. Thieme, New York Google Scholar
  36. 36.
    Abosch A, Hutchison WD, Saint-Cyr JA, Dostrovsky JO and Lozano AM (2002). Movement-related neurons of the subthalamic nucleus in patients with Parkinson’s disease. J Neurosurg 97(5): 1167–1172 PubMedCrossRefGoogle Scholar
  37. 37.
    Theodosopoulos PV, Marks WJ Jr., Christine C and Starr PA (2003). Locations of movement-related cells in the human subthalamic nucleus in Parkinson’s disease. Mov Disord 18(7): 791–798 PubMedCrossRefGoogle Scholar
  38. 38.
    Rodriguez-Oroz MC, Rodriguez M, Guridi J, Mewes K, Chockkman V, Vitek J, DeLong MR and Obeso JA (2001). The subthalamic nucleus in Parkinson’s disease: Somatotopic organization and physiological characteristics. Brain 124(Pt 9): 1777–1790 PubMedCrossRefGoogle Scholar
  39. 39.
    Patel NK, Plaha P, O’Sullivan K, McCarter R, Heywood P and Gill SS (2003). MRI directed bilateral stimulation of the subthalamic nucleus in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 74(12): 1631–1637 PubMedCrossRefGoogle Scholar
  40. 40.
    Schaltenbrand G and Bailey P (1959). Introduction to stereotaxis with an atlas of the human brain. Thieme Verlag, New York Google Scholar
  41. 41.
    Talairach J (1957). Atlas d’anatomie stéréotaxique. Repérage radiologique indirect des noyaux gris centraux des régions mésencéphalo-sous-optiques et hypothalamiques de l’homme. Masson & Cie, Paris Google Scholar
  42. 42.
    Abrahamson EE and Moore RY (2001). The posterior hypothalamic area: Chemoarchitecture and afferent connections. Brain Res 889(1–2): 1–22 PubMedCrossRefGoogle Scholar

Copyright information

© CARS 2007

Authors and Affiliations

  • Jean-Jacques Lemaire
    • 1
    • 5
  • Jérôme Coste
    • 1
    • 5
  • Lemlih Ouchchane
    • 4
    • 5
  • Simone Hemm
    • 5
  • Philippe Derost
    • 2
  • Miguel Ulla
    • 2
  • Séverine Siadoux
    • 3
  • Jean Gabrillargues
    • 3
    • 5
  • Franck Durif
    • 2
  • Jean Chazal
    • 1
  1. 1.Service de Neurochirurgie ACHU Clermont-Ferrand, Hôpital Gabriel MontpiedClermont-FerrandFrance
  2. 2.Service de Neurologie ACHU Clermont-Ferrand, Hôpital Gabriel MontpiedClermont-FerrandFrance
  3. 3.Service de Radiologie ACHU Clermont-Ferrand, Hôpital Gabriel MontpiedClermont-FerrandFrance
  4. 4.Unité de Bio statistiques, télématique et traitement d’imageUniv Clermont 1, UFR MédecineClermont-FerrandFrance
  5. 5.Inserm, ERI 14Clermont-FerrandFrance

Personalised recommendations