Interactive definition of transfer functions in volume rendering based on image markers

  • Michael TeistlerEmail author
  • Richard S. Breiman
  • Sauw Ming Liong
  • Liang Yoong Ho
  • Atif Shahab
  • Wieslaw L. Nowinski
Original Article


Objectives A user interface for transfer function (TF) definition in volume rendering (VR) was developed that allows the user to intuitively assign color and opacity to the original image intensities. This software may surpass solutions currently deployed in clinical practice by simplifying the use of TFs beyond predefined settings that are not always applicable.

Materials and methods The TF definition is usually a cumbersome task that requires the user to manipulate graphical representations of the TF (e.g. trapezoids). A new method that allows the user to place markers at points of interest directly on CT and MRI images or orthogonal reformations was developed based on two-dimensional region growing and a few user-definable marker-related parameters. For each user defined image marker, a segment of the transfer function is computed. The resulting TF can also be applied to the slice image views. Results were judged subjectively.

Results Each individualized TF can be defined interactively in a few simple steps. For every user interaction, immediate visual feedback is given. Clinicians who tested the application appreciated being able to directly work on familiar slice images to generate the desired 3D views.

Conclusion Interactive TF definition can increase the actual utility of VR, help to understand the role of the TF with its variations, and increase the acceptance of VR as a clinical tool.


Three-dimensional imaging Magnetic resonance imaging X-ray computed tomography Volume rendering Transfer function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Choplin RH, Buckwalter KA, Rydberg J and Farber JM (2004). CT with 3D rendering of the tendons of the foot and ankle: technique, normal anatomy, and disease. Radiographics 24: 343–356 PubMedCrossRefGoogle Scholar
  2. 2.
    Kuszyk BS and Fishman EK (1998). Technical aspects of CT angiography. Semin Ultrasound CT MR 19: 383–393 PubMedCrossRefGoogle Scholar
  3. 3.
    Napel S, Marks MP, Rubin GD, Dake MD, McDonnell CH, Song SM, Enzmann DR and Jeffrey RB (1992). CT angiography with spiral CT and maximum intensity projection. Radiology 185: 607–610 PubMedGoogle Scholar
  4. 4.
    Rubin GD, Dake MD, Napel SA, McDonnell CH and Jeffrey RBJr (1993). Three-dimensional spiral CT angiography of the abdomen: initial clinical experience. Radiology 186: 147–152 PubMedGoogle Scholar
  5. 5.
    Pretorius ES and Fishman EK (1999). Volume-rendered three-dimensional spiral CT: musculoskeletal applications. Radiographics 19: 1143–1160 PubMedGoogle Scholar
  6. 6.
    Calhoun PS, Kuszyk BS, Heath DG, Carley JC and Fishman EK (1999). Three-dimensional volume rendering of spiral CT data: theory and method. Radiographics 19: 745–764 PubMedGoogle Scholar
  7. 7.
    Kuszyk BS, Heath DG, Bliss DF and Fishman EK (1996). Skeletal 3-D CT: advantages of volume rendering over surface rendering. Skeletal Radiol 25: 207–214 PubMedCrossRefGoogle Scholar
  8. 8.
    Rubin GD, Schmidt AJ, Logan LJ and Sofilos MC (2001). Multi-detector row CT angiography of lower extremity arterial inflow and runoff: initial experience. Radiology 221: 146–158 PubMedCrossRefGoogle Scholar
  9. 9.
    Pekar V, Wiemker R, Hempel D (2001) Fast detection of meaningful isosurfaces for volume data visualization. Proc IEEE Vis 223–230Google Scholar
  10. 10.
    Fujishiro I, Azuma T, Takeshima Y (1999) Automating transfer function design for comprehensible volume rendering based on 3D field topology analysis. Proc IEEE Vis 467–470Google Scholar
  11. 11.
    Sereda P, Vilanova A, Serlie IWO and Gerritsen FA (2006). Visualization of boundaries in volumetric datasets using LH histograms. IEEE Trans Vis Comput Graph 12(2): 208–218 PubMedCrossRefGoogle Scholar
  12. 12.
    Sereda P, Vilanova A, Gerritsen FA (2006) Automating transfer function design for volume rendering using hierarchical clustering of material boundaries. Proc IEEE/Euro graph Symp Vis 243–250Google Scholar
  13. 13.
    Serlie IWO, Truyen R, Florie J, Post F, van Vliet LJ, Vos FM (2003) Computed cleansing for virtual colonoscopy using a three-material transition model. Proc MICCAI 175–183Google Scholar
  14. 14.
    Kniss J, Kindlmann G and Hansen C (2001). Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets. Proc IEEE Vis 2001: 255–262 Google Scholar
  15. 15.
    Kniss J, Kindlmann G and Hansen C (2002). Multidimensional transfer functions for interactive volume rendering. IEEE Trans Vis Comput Graph 8(3): 270–285 CrossRefGoogle Scholar
  16. 16.
    Lundstroem C, Ljung P and Ynnerman A (2006). Local histograms for design of transfer functions in direct volume rendering. IEEE Trans Vis Comput Graph 12(6): 1570–1579 CrossRefGoogle Scholar
  17. 17.
    Persson A, Brismar TB, Lundström C, Dahlström N, Othberg F and Smedby Ö (2006). Standardized volume rendering for magnetic resonance angiography measurements in the abdominal aorta. Radiologica 47(2): 172–178 CrossRefGoogle Scholar
  18. 18.
    Lundström C, Ynnerman A, Ljung P, Persson A, Knutsson H (2006) The a-histogram: using spatial coherence to enhance histograms and transfer function design. Proc IEEE/Eurograph Symp Vis 227–234Google Scholar
  19. 19.
    Bajaj CL, Pascucci V, Schikore DR (1997) The contour spectrum. Proc IEEE Vis 167–173, 539Google Scholar
  20. 20.
    Pfister H, Lorensen B, Bajaj C, Kindlmann G, Schroeder W, Avila LS, Martin K, Machiraju R and Lee J (2001). The transfer function bake-off. IEEE Comput Graph Appl 21: 16–22 CrossRefGoogle Scholar
  21. 21.
    Kindlmann G, Durkin JW (1998) Semi-automatic generation of transfer functions for direct volume rendering. Proc IEEE Symp Vol Vis 79–86, 170Google Scholar
  22. 22.
    Marks J, Andalman B, Beardsley P, Freeman W, Gibson S, Hodgins J, Kang T, Mirtich B, Pfister H, Ruml W, Ryall K, Seims J and Shieber S (1997). Design galleries: a general approach to setting parameters for computer graphics and animation. Proc SIGGRAPH 97: 389–400 CrossRefGoogle Scholar
  23. 23.
    Jankun-Kelly TJ and Kwan-Liu Ma (2001). Visualization exploration and encapsulation via a spreadsheet-like interface. IEEE Trans Vis Comput Graph 7(3): 275–287 CrossRefGoogle Scholar
  24. 24.
    Huang R and Ma KL (2003). RGVis: region growing based techniques for volume visualization. IEEE Pac Conf Comput Graph Appl 2003: 355–363 Google Scholar
  25. 25.
    Rheingans P (2002). Are we there yet? Exploring with dynamic visualization. IEEE Comput Graph Appl 22(1): 6–10 CrossRefGoogle Scholar
  26. 26.
    Tzeng FY, Ma KL (2004) A cluster-space visual interface for arbitrary dimensional classification of volume data. Proc IEEE/Eurograph Symp Vis 17–24Google Scholar
  27. 27.
    Tzeng FY, Lum EB and Ma KL (2005). An intelligent system approach to higher-dimensional classification of volume data. IEEE Trans Vis Comput Graph 11(3): 273–284 PubMedCrossRefGoogle Scholar
  28. 28.
    Jones RM (1999) Introduction to MFC Programming with Visual C++. Microsoft Technologies Series. Prentice-Hall, Englewood CliffsGoogle Scholar
  29. 29.
    Wernecke J (1994) The Inventor Mentor, Programming Object- Oriented 3D Graphics with open inventor, Release 2. Addison Wesley, ReadingGoogle Scholar
  30. 30.
    Wilson O, Gelder AV, Wilhelms J (1994) Direct volume rendering via 3D textures. Technical report UCSC-CRL-94–19, University of California, Santa CruzGoogle Scholar
  31. 31.
    Teistler M, Breiman RS, Ho LY, Liong SM, Shahab A, Nowinski WL (2005) See what you want to see: easy definition of color map for volume rendering and related image processing techniques. In: Program 91st Radiological Society of North America Scientific Assembly and Annual Meeting, 2005, pp 863–864Google Scholar

Copyright information

© CARS 2007

Authors and Affiliations

  • Michael Teistler
    • 1
    Email author
  • Richard S. Breiman
    • 2
  • Sauw Ming Liong
    • 3
  • Liang Yoong Ho
    • 3
  • Atif Shahab
    • 3
  • Wieslaw L. Nowinski
    • 1
  1. 1.Biomedical Imaging Lab, Agency for ScienceTechnology and Research (A*STAR)SingaporeSingapore
  2. 2.Department of RadiologyUniversity of CaliforniaSan FranciscoUSA
  3. 3.Bioinformatics Institute, Agency for ScienceTechnology and Research (A*STAR)SingaporeSingapore

Personalised recommendations