Advertisement

Dual-energy CT: theoretical principles and clinical applications

  • Andrea AgostiniEmail author
  • Alessandra Borgheresi
  • Alberto Mari
  • Chiara Floridi
  • Federico Bruno
  • Marina Carotti
  • Nicolò Schicchi
  • Antonio Barile
  • Stefania Maggi
  • Andrea Giovagnoni
COMPUTED TOMOGRAPHY
  • 19 Downloads

Abstract

The physical principles of dual-energy computed tomography (DECT) are as old as computed tomography (CT) itself. To understand the strengths and the limits of this technology, a brief overview of theoretical basis of DECT will be provided. Specific attention will be focused on the interaction of X-rays with matter, on the principles of attenuation of X-rays in CT toward the intrinsic limits of conventional CT, on the material decomposition algorithms (two- and three-basis-material decomposition algorithms) and on effective Rho-Z methods. The progresses in material decomposition algorithms, in computational power of computers and in CT hardware, lead to the development of different technological solutions for DECT in clinical practice. The clinical applications of DECT are briefly reviewed in relation to the specific algorithms.

List of symbols

σ

Cross section, or the probability of interaction photon–electron

R

Rayleigh scattering

τ

Photoelectric absorption

K, L

Inner electron shells

Z

Atomic number

E

Energy

k

Constant

ρ

Physical density

A

Atomic weight

h

Plank’s constant

ν

Speed of photon

Proportional to

c

Compton scattering

ne

Electron density

I

Intensity

x

Thickness

e

Euler’s number or Napier’s constant

CT#

CT number in Hounsfield’s units

μ/ρ

Mass attenuation coefficient

Summation of multiple terms

Approximately equal to

α

Constant in Eq. 8

β

Constant in Eq. 8

d

Exponent in Eq. 8

g

Exponent in Eq. 8

fKN(E)

Klein–Nishina function

ρZ and Rho-Z

Material decomposition method using effective density and atomic numbers

r

Spatial location of the unit volume

ρi

Physical density of the ith basis material

δi

Area density of the ith basis material

Vi

Fractional volume of the ith basis material

mi

Fractional mass of the ith basis material

Abbreviations

DECT

Dual-energy CT

CT

Computed tomography

Z

Atomic number

dsDECT

Dual-source dual-energy CT

VMI

Virtual monoenergetic images

FOV

Field of view

VNC

Virtual non-contrast

MRI

Magnetic resonance imaging

VR

Volume rendering

Notes

Funding

No funding was received for this paper.

Compliance with ethical standards

Conflict of interest

AA is a speaker for Siemens Healthineers. The other authors have no conflict of interest to declare. 

References

  1. 1.
    Hounsfield GN (1973) Computerized transverse axial scanning (tomography): Part 1. Description of system. Br J Radiol 46:1016–1022PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Alvarez RE, Macovski A (1976) Energy-selective reconstructions in X-ray computerized tomography. Phys Med Biol 21:733–744PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Macovski A, Alvarez RE, Chan JL, Stonestrom JP, Zatz LM (1976) Energy dependent reconstruction in X-ray computerized tomography. Comput Biol Med 6:325–336PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Flohr TG, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Bushberg JT (1998) The AAPM/RSNA physics tutorial for residents. X-ray interactions. RadioGraphics 18:457–468PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Buzug TM (2008) Fundamentals of X-rays Physiscs. In: Buzug TM (ed) Computed tomography from photon statistics to modern cone-beam CT. Springer, Berlin, pp 14–73Google Scholar
  7. 7.
    Chandra R, Rahmin A (2018) Interaction of high-energy radiation with matter. In: Chandra R, Rahmin A (eds) Nuclear medicine physics. The basics, 8th edn. Wolters KluwerGoogle Scholar
  8. 8.
    McCullough EC (1975) Photon attenuation in computed tomography. Med Phys 2:307–320PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Brooks RA, Di Chiro G (1976) Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging. Phys Med Biol 21:689–732PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    McCollough CH, Leng S, Yu L, Fletcher JG (2015) Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 276:637–653PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Hubbell JH (1969) Photon cross sections, attenuation coefficients, and energy absorption coefficients from 10 keV to 100 GeV. National Bureau of Standards, GaithersburgCrossRefGoogle Scholar
  12. 12.
    Hubbell JH (1977) Photon mass attenuation and mass energy-absorption coefficients for H, C, N, O, Ar, and seven mixtures from 0.1 keV to 20 MeV. Radiat Res 70:58–81PubMedCrossRefGoogle Scholar
  13. 13.
    Kalender WA, Perman WH, Vetter JR, Klotz E (1986) Evaluation of a prototype dual-energy computed tomographic apparatus. I. Phantom Stud Med Phys 13:334–339Google Scholar
  14. 14.
    Zhao Y, Wu Y, Zuo Z, Cheng S (2017) CT angiography of the kidney using routine CT and the latest gemstone spectral Imaging combination of different noise indexes: image quality and radiation dose. Radiol Med 122:327–336PubMedCrossRefGoogle Scholar
  15. 15.
    Magarelli N, De Santis V, Marziali G et al (2018) Application and advantages of monoenergetic reconstruction images for the reduction of metallic artifacts using dual-energy CT in knee and hip prostheses. Radiol Med 123:593–600PubMedCrossRefGoogle Scholar
  16. 16.
    Grant KL, Flohr TG, Krauss B, Sedlmair M, Thomas C, Schmidt B (2014) Assessment of an advanced image-based technique to calculate virtual monoenergetic computed tomographic images from a dual-energy examination to improve contrast-to-noise ratio in examinations using iodinated contrast media. Invest Radiol 49:586–592PubMedCrossRefGoogle Scholar
  17. 17.
    McCollough CH, Schmidt B, Liu X, Yu L, Leng S (2011) Dual-energy algorithms and postprocessing techniques. In: Johnson TRC, Fink C, Schönberg SO, Reiser MF (eds) Dual energy CT in clinical practice. Springer, BerlinGoogle Scholar
  18. 18.
    Maass C, Baer M, Kachelriess M (2009) Image-based dual energy CT using optimized precorrection functions: a practical new approach of material decomposition in image domain. Med Phys 36:3818–3829PubMedCrossRefGoogle Scholar
  19. 19.
    Goodsitt MM, Rosenthal DI, Reinus WR, Coumas J (1987) Two postprocessing CT techniques for determining the composition of trabecular bone. Invest Radiol 22:209–215PubMedCrossRefGoogle Scholar
  20. 20.
    Liu X, Yu L, Primak AN, McCollough CH (2009) Quantitative imaging of element composition and mass fraction using dual-energy CT: three-material decomposition. Med Phys 36:1602–1609PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Krauss B, Schmidt B, Flohr T (2011) Dual source CT. In: Johnson TRC, Fink C, Schönberg SO, Reiser MF (eds) Dual energy CT in clinical practice. Springer, BerlinGoogle Scholar
  22. 22.
    Vlassenbroek A (2011) Dual layer CT. In: Johnson TRC, Fink C, Schönberg SO, Reiser MF (eds) Dual energy CT in clinical practice. Springer, BerlinGoogle Scholar
  23. 23.
    Johnson TR, Krauss B, Sedlmair M et al (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17:1510–1517PubMedCrossRefGoogle Scholar
  24. 24.
    Primak AN, Giraldo JC, Eusemann CD et al (2010) Dual-source dual-energy CT with additional tin filtration: dose and image quality evaluation in phantoms and in vivo. AJR Am J Roentgenol 195:1164–1174PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Krauss B, Grant KL, Schmidt BT, Flohr TG (2015) The importance of spectral separation: an assessment of dual-energy spectral separation for quantitative ability and dose efficiency. Invest Radiol 50:114–118PubMedCrossRefGoogle Scholar
  26. 26.
    Zhang D, Li X, Liu B (2011) Objective characterization of GE discovery CT750 HD scanner: gemstone spectral imaging mode. Med Phys 38:1178–1188PubMedCrossRefGoogle Scholar
  27. 27.
    Euler A, Parakh A, Falkowski AL et al (2016) Initial results of a single-source dual-energy computed tomography technique using a split-filter: assessment of image quality, radiation dose, and accuracy of dual-energy applications in an In Vitro and In Vivo study. Invest Radiol.  https://doi.org/10.1097/rli.0000000000000257 CrossRefPubMedGoogle Scholar
  28. 28.
    Diekhoff T, Ziegeler K, Feist E et al (2015) First experience with single-source dual-energy computed tomography in six patients with acute arthralgia: a feasibility experiment using joint aspiration as a reference. Skeletal Radiol 44:1573–1577PubMedCrossRefGoogle Scholar
  29. 29.
    Kim SJ, Lim HK, Lee HY et al (2012) Dual-energy CT in the evaluation of intracerebral hemorrhage of unknown origin: differentiation between tumor bleeding and pure hemorrhage. AJNR Am J Neuroradiol 33:865–872PubMedCrossRefGoogle Scholar
  30. 30.
    Hong YJ, Kim JY, Choe KO et al (2013) Different perfusion pattern between acute and chronic pulmonary thromboembolism: evaluation with two-phase dual-energy perfusion CT. AJR Am J Roentgenol 200:812–817PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Zhao Y, Zuo Z, Cheng S, Wu Y (2018) CT pulmonary angiography using organ dose modulation with an iterative reconstruction algorithm and 3D Smart mA in different body mass indices: image quality and radiation dose. Radiol Med 123:676–685PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Hachulla AL, Pontana F, Wemeau-Stervinou L et al (2012) Krypton ventilation imaging using dual-energy CT in chronic obstructive pulmonary disease patients: initial experience. Radiology 263:253–259PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Chae EJ, Seo JB, Goo HW et al (2008) Xenon ventilation CT with a dual-energy technique of dual-source CT: initial experience. Radiology 248:615–624PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Jin KN, De Cecco CN, Caruso D et al (2016) Myocardial perfusion imaging with dual energy CT. Eur J Radiol 85:1914–1921PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    De Santis D, Jin KN, Schoepf UJ et al (2018) Heavily calcified coronary arteries: advanced calcium subtraction improves luminal visualization and diagnostic confidence in dual-energy coronary computed tomography angiography. Invest Radiol 53:103–109PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Tran DN, Straka M, Roos JE, Napel S, Fleischmann D (2009) Dual-energy CT discrimination of iodine and calcium: experimental results and implications for lower extremity CT angiography. Acad Radiol 16:160–171PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Obaid DR, Calvert PA, Gopalan D et al (2014) Dual-energy computed tomography imaging to determine atherosclerotic plaque composition: a prospective study with tissue validation. J Cardiovasc Comput Tomogr 8:230–237PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Stagnaro N, Rizzo F, Torre M, Cittadini G, Magnano G (2017) Multimodality imaging of pediatric airways disease: indication and technique. Radiol Med 122:419–429PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Toma P, Cannata V, Genovese E, Magistrelli A, Granata C (2017) Radiation exposure in diagnostic imaging: wisdom and prudence, but still a lot to understand. Radiol Med 122:215–220PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Parakh A, Macri F, Sahani D (2018) Dual-energy computed tomography: dose reduction, series reduction, and contrast load reduction in dual-energy computed tomography. Radiol Clin North Am 56:601–624PubMedCrossRefGoogle Scholar
  41. 41.
    Paolicchi F, Bastiani L, Guido D, Dore A, Aringhieri G, Caramella D (2018) Radiation dose exposure in patients affected by lymphoma undergoing repeat CT examinations: how to manage the radiation dose variability. Radiol Med 123:191–201PubMedCrossRefGoogle Scholar
  42. 42.
    Agostini A, Mari A, Lanza C et al (2019) Trends in radiation dose and image quality for pediatric patients with a multidetector CT and a third-generation dual-source dual-energy CT. Radiol Med 124:745–752PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    De Cecco CN, Muscogiuri G, Schoepf UJ et al (2016) Virtual unenhanced imaging of the liver with third-generation dual-source dual-energy CT and advanced modeled iterative reconstruction. Eur J Radiol 85:1257–1264PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Borhani AA, Kulzer M, Iranpour N et al (2017) Comparison of true unenhanced and virtual unenhanced (VUE) attenuation values in abdominopelvic single-source rapid kilovoltage-switching spectral CT. Abdom Radiol NY 42:710–717PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Chandarana H, Megibow AJ, Cohen BA et al (2011) Iodine quantification with dual-energy CT: phantom study and preliminary experience with renal masses. AJR Am J Roentgenol 196:W693–700PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Lv P, Lin XZ, Li J, Li W, Chen K (2011) Differentiation of small hepatic hemangioma from small hepatocellular carcinoma: recently introduced spectral CT method. Radiology 259:720–729PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Dai X, Schlemmer H-P, Schmidt B et al (2013) Quantitative therapy response assessment by volumetric iodine-uptake measurement: initial experience in patients with advanced hepatocellular carcinoma treated with sorafenib. Eur J Radiol 82:327–334PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Uhrig M, Sedlmair M, Schlemmer HP, Hassel JC, Ganten M (2013) Monitoring targeted therapy using dual-energy CT: semi-automatic RECIST plus supplementary functional information by quantifying iodine uptake of melanoma metastases. Cancer Imaging 13:306–313PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Meyer M, Hohenberger P, Apfaltrer P et al (2013) CT-based response assessment of advanced gastrointestinal stromal tumor: dual energy CT provides a more predictive imaging biomarker of clinical benefit than RECIST or Choi criteria. Eur J Radiol 82:923–928PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Fulwadhva UP, Wortman JR, Sodickson AD (2016) Use of dual-energy ct and iodine maps in evaluation of bowel disease. RadioGraphics 36:393–406PubMedCrossRefGoogle Scholar
  51. 51.
    Skornitzke S, Kauczor H-U, Stiller W et al (2018) Dual-energy CT iodine maps as an alternative quantitative imaging biomarker to abdominal CT perfusion: determination of appropriate trigger delays for acquisition using bolus tracking. Br J Radiol 91:20170351PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Leng S, Huang A, Cardona JM, Duan X, Williams JC, McCollough CH (2016) Dual-energy CT for quantification of urinary stone composition in mixed stones: a phantom study. AJR Am J Roentgenol 207:321–329PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Luo XF, Xie XQ, Cheng S et al (2015) Dual-energy ct for patients suspected of having liver iron overload: can virtual iron content imaging accurately quantify liver iron content? Radiology 277:95–103PubMedCrossRefGoogle Scholar
  54. 54.
    Dalbeth N, House ME, Aati O et al (2015) Urate crystal deposition in asymptomatic hyperuricaemia and symptomatic gout: a dual energy CT study. Ann Rheum Dis 74:908–911PubMedCrossRefGoogle Scholar
  55. 55.
    Kim HR, Lee JH, Kim NR, Lee SH (2014) Detection of calcium pyrophosphate dihydrate crystal deposition disease by dual-energy computed tomography. Korean J Intern Med 29:404–405PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Aggarwal A, Singbal SB, Yiew DSS, Tian QS, Wang S, Junwei Z (2019) Pigmented villonodular synovitis: novel role of dual-energy CT. J Clin Rheumatol.  https://doi.org/10.1097/rhu.0000000000000980 CrossRefPubMedGoogle Scholar
  57. 57.
    Zheng S, Dong Y, Miao Y et al (2014) Differentiation of osteolytic metastases and Schmorl’s nodes in cancer patients using dual-energy CT: advantage of spectral CT imaging. Eur J Radiol 83:1216–1221PubMedCrossRefGoogle Scholar
  58. 58.
    Suh CH, Yun SJ, Jin W, Lee SH, Park SY, Ryu CW (2018) Diagnostic performance of dual-energy CT for the detection of bone marrow oedema: a systematic review and meta-analysis. Eur Radiol 28:4182–4194PubMedCrossRefGoogle Scholar
  59. 59.
    Rajiah P, Sundaram M, Subhas N (2019) Dual-energy CT in musculoskeletal imaging: what is the role beyond gout? AJR Am J Roentgenol 213:493–505PubMedCrossRefGoogle Scholar
  60. 60.
    Omoumi P, Verdun FR, Guggenberger R, Andreisek G, Becce F (2015) Dual-energy CT: basic principles, technical approaches, and applications in musculoskeletal imaging (part 2). Semin Musculoskelet Radiol 19:438–445PubMedCrossRefGoogle Scholar
  61. 61.
    McNamara MM, Little MD, Alexander LF, Carroll LV, Beasley TM, Morgan DE (2015) Multireader evaluation of lesion conspicuity in small pancreatic adenocarcinomas: complimentary value of iodine material density and low keV simulated monoenergetic images using multiphasic rapid kVp-switching dual energy CT. Abdom Imaging 40:1230–1240PubMedCrossRefGoogle Scholar
  62. 62.
    Rizzo S, Femia M, Radice D et al (2018) Evaluation of deep myometrial invasion in endometrial cancer patients: is dual-energy CT an option? Radiol Med 123:13–19PubMedCrossRefGoogle Scholar
  63. 63.
    De Cecco CN, Caruso D, Schoepf UJ et al (2018) A noise-optimized virtual monoenergetic reconstruction algorithm improves the diagnostic accuracy of late hepatic arterial phase dual-energy CT for the detection of hypervascular liver lesions. Eur Radiol.  https://doi.org/10.1007/s00330-018-5313-6 CrossRefPubMedGoogle Scholar
  64. 64.
    Weiss J, Notohamiprodjo M, Bongers M et al (2017) Noise-optimized monoenergetic post-processing improves visualization of incidental pulmonary embolism in cancer patients undergoing single-pass dual-energy computed tomography. Radiol Med 122:280–287PubMedCrossRefGoogle Scholar
  65. 65.
    Qin L, Ma Z, Yan F, Yang W (2018) Iterative model reconstruction (IMR) algorithm for reduced radiation dose renal artery CT angiography with different tube voltage protocols. Radiol Med 123:83–90PubMedCrossRefGoogle Scholar
  66. 66.
    Sheafor DH, Kovacs MD, Burchett P, Picard MM, Davis B, Hardie AD (2018) Impact of low-kVp scan technique on oral contrast density at abdominopelvic CT. Radiol Med 123:918–925PubMedCrossRefGoogle Scholar
  67. 67.
    Bahrami-Motlagh H, Hassanian-Moghaddam H, Zamini H, Zamani N, Gachkar L (2018) Correlation of abdominopelvic computed tomography with clinical manifestations in methamphetamine body stuffers. Radiol Med 123:98–104PubMedCrossRefGoogle Scholar
  68. 68.
    Grimm J, Wudy R, Ziegeler E et al (2014) Differentiation of heroin and cocaine using dual-energy CT-an experimental study. Int J Legal Med 128:475–482PubMedCrossRefGoogle Scholar
  69. 69.
    Uyeda JW, Richardson IJ, Sodickson AD (2017) Making the invisible visible: improving conspicuity of noncalcified gallstones using dual-energy CT. Abdom Radiol NY 42:2933–2939PubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Medical Radiology 2019

Authors and Affiliations

  • Andrea Agostini
    • 1
    • 2
    Email author
  • Alessandra Borgheresi
    • 2
  • Alberto Mari
    • 3
  • Chiara Floridi
    • 4
  • Federico Bruno
    • 5
  • Marina Carotti
    • 2
  • Nicolò Schicchi
    • 2
  • Antonio Barile
    • 5
  • Stefania Maggi
    • 3
  • Andrea Giovagnoni
    • 1
    • 2
  1. 1.Department of Clinical, Special and Dental SciencesUniversity Politecnica delle MarcheAnconaItaly
  2. 2.Department of Radiology – Division of Special and Pediatric RadiologyUniversity Hospital “Umberto I – Lancisi – Salesi”AnconaItaly
  3. 3.Department of Radiology – Division of Medical PhysicsUniversity Hospital “Umberto I – Lancisi – Salesi”AnconaItaly
  4. 4.Department of Health Sciences, Diagnostic and Interventional RadiologyHospital “San Paolo”, University of MilanMilanItaly
  5. 5.Department of Biotechnological and Applied SciencesUniversity of L’AquilaL’AquilaItaly

Personalised recommendations