Advertisement

La radiologia medica

, Volume 124, Issue 11, pp 1121–1127 | Cite as

New advances in MRI diagnosis of degenerative osteoarthropathy of the peripheral joints

  • Federico Bruno
  • Francesco Arrigoni
  • Pierpaolo Palumbo
  • Raffaele Natella
  • Nicola Maggialetti
  • Alfonso Reginelli
  • Alessandra Splendiani
  • Ernesto Di Cesare
  • Luca Brunese
  • Giuseppe Guglielmi
  • Andrea Giovagnoni
  • Carlo Masciocchi
  • Antonio BarileEmail author
MAGNETIC RESONANCE IMAGING

Abstract

Degenerative osteoarthropathy is one of the leading causes of the pain and disability from musculoskeletal disease in the adult population. Magnetic resonance imaging (MRI) allows optimal visualization of all tissues involved in degenerative osteoarthritis disease process, mainly the articular cartilage. In addition to qualitative and semiquantitative morphologic assessment, several MRI-based advanced techniques have been developed to allow characterization and quantification of the biochemical cartilage composition. These include quantitative analysis and several compositional techniques (T1 and T2 relaxometry measurements and mapping, sodium imaging, delayed gadolinium-enhanced MRI of cartilage dGEMRIC, glycosaminoglycan-specific chemical exchange saturation transfer gagCEST, diffusion-weighted imaging DWI and diffusion tensor imaging DTI). These compositional MRI techniques may have the potential to serve as quantitative, reproducible, noninvasive and objective endpoints for OA assessment, particularly in diagnosis of early and pre-radiographic stages of the disease and in monitoring disease progression and treatment effects over time.

Keywords

MRI Cartilage Advanced imaging T2 mapping DWI 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This article does not contain any studies with human participants performed by any of the authors.

References

  1. 1.
    Bruno F, Smaldone F, Varrassi M et al (2017) MRI findings in lumbar spine following O2–O3 chemiodiscolysis: a long-term follow-up. Interv Neuroradiol.  https://doi.org/10.1177/1591019917703784 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Barile A, Arrigoni F, Bruno F et al (2017) Computed tomography and MR imaging in rheumatoid arthritis. Radiol Clin North Am.  https://doi.org/10.1016/j.rcl.2017.04.006 CrossRefPubMedGoogle Scholar
  3. 3.
    Bruno F, Barile A, Arrigoni F et al (2018) Weight-bearing MRI of the knee: a review of advantages and limits. Acta Biomed.  https://doi.org/10.23750/abm.v89i1-s.7011 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Carotti M, Salaffi F, DiCarlo M, Giovagnoni A (2017) Relationship between magnetic resonance imaging findings, radiological grading, psychological distress and pain in patients with symptomatic knee osteoarthritis. Radiol Medica.  https://doi.org/10.1007/s11547-017-0799-6 CrossRefGoogle Scholar
  5. 5.
    Roemer FW, Crema MD, Trattnig S, Guermazi A (2011) Advances in imaging of osteoarthritis and cartilage. Radiology 260:332–354.  https://doi.org/10.1148/radiol.11101359 CrossRefPubMedGoogle Scholar
  6. 6.
    Reginelli A, Zappia M, Barile A, Brunese L (2017) Strategies of imaging after orthopedic surgery. Musculoskelet Surg.  https://doi.org/10.1007/s12306-017-0458-z CrossRefPubMedGoogle Scholar
  7. 7.
    Zappia M, Carfora M, Romano AM et al (2016) Sonography of chondral print on humeral head. Skeletal Radiol.  https://doi.org/10.1007/s00256-015-2238-x CrossRefPubMedGoogle Scholar
  8. 8.
    Zappia M, Cuomo G, Martino MT et al (2016) The effect of foot position on power doppler ultrasound grading of achilles enthesitis. Rheumatol Int.  https://doi.org/10.1007/s00296-016-3461-z CrossRefPubMedGoogle Scholar
  9. 9.
    Hayashi D, Roemer FW, Guermazi A (2018) Imaging of osteoarthritis—recent research developments and future perspective. Br J Radiol.  https://doi.org/10.1259/bjr.20170349 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Demehri S, Guermazi A, Kwoh CK (2016) Diagnosis and longitudinal assessment of osteoarthritis: review of available imaging techniques. Rheum Dis Clin North Am 42:607–620.  https://doi.org/10.1016/j.rdc.2016.07.004 CrossRefGoogle Scholar
  11. 11.
    Arrigoni F, Barile A, Zugaro L et al (2017) Intra-articular benign bone lesions treated with magnetic resonance-guided focused ultrasound (MRgFUS): imaging follow-up and clinical results. Med Oncol.  https://doi.org/10.1007/s12032-017-0904-7 CrossRefPubMedGoogle Scholar
  12. 12.
    Barile A, Bruno F, Arrigoni F et al (2017) Emergency and trauma of the ankle. Semin Musculoskelet Radiol.  https://doi.org/10.1055/s-0037-1602408 CrossRefPubMedGoogle Scholar
  13. 13.
    Arrigoni F, Bruno F, Zugaro L et al (2018) Developments in the management of bone metastases with interventional radiology. Acta Biomed.  https://doi.org/10.23750/abm.v89i1-s.7020 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Paparo F, Fabbro E, Piccazzo R et al (2012) Multimodality imaging of intraosseous ganglia of the wrist and their differential diagnosis. Radiol Med.  https://doi.org/10.1007/s11547-012-0875-x CrossRefPubMedGoogle Scholar
  15. 15.
    Aliprandi A, Di Pietto F, Minafra P et al (2014) Femoro-acetabular impingement: what the general radiologist should know. Radiol Medica.  https://doi.org/10.1007/s11547-013-0314-7 CrossRefGoogle Scholar
  16. 16.
    Kang Y, Yuan W, Ding X, Wang G (2016) Chondrosarcoma of the para-acetabulum: correlation of imaging features with histopathological grade. Radiol Medica.  https://doi.org/10.1007/s11547-016-0673-y CrossRefGoogle Scholar
  17. 17.
    Cicala D, Briganti F, Casale L et al (2013) Atraumatic vertebral compression fractures: differential diagnosis between benign osteoporotic and malignant fractures by MRI. Musculoskelet Surg 97:169–179CrossRefGoogle Scholar
  18. 18.
    Caranci F, Briganti F, La Porta M et al (2013) Magnetic resonance imaging in brachial plexus injury. Musculoskelet Surg 97:181–190CrossRefGoogle Scholar
  19. 19.
    Silvestri E, Barile A, Albano D et al (2018) Interventional therapeutic procedures in the musculoskeletal system: an Italian Survey by the Italian College of Musculoskeletal Radiology. Radiol Medica.  https://doi.org/10.1007/s11547-017-0842-7 CrossRefGoogle Scholar
  20. 20.
    Barile A, Reginelli A, De Filippo M, Brunese L, Masciocchi C (2018) Diagnostic imaging and intervention of the musculoskeletal system: state of the art. Acta Bio Medica Atenei Parm 89:5–6Google Scholar
  21. 21.
    Barile A, Arrigoni F, Bruno F et al (2018) Present role and future perspectives of interventional radiology in the treatment of painful bone lesions. Futur Oncol.  https://doi.org/10.2217/fon-2017-0657 CrossRefGoogle Scholar
  22. 22.
    Arrigoni F, Bruno F, Zugaro L et al (2018) Role of interventional radiology in the management of musculoskeletal soft-tissue lesions. Radiol Medica.  https://doi.org/10.1007/s11547-018-0893-4 CrossRefGoogle Scholar
  23. 23.
    Cazzato RL, Arrigoni F, Boatta E et al (2018) Percutaneous management of bone metastases: state of the art, interventional strategies and joint position statement of the Italian College of MSK Radiology (ICoMSKR) and the Italian College of Interventional Radiology (ICIR). Radiol Med 1:3.  https://doi.org/10.1007/s11547-018-0938-8 CrossRefGoogle Scholar
  24. 24.
    Barile A, Lanni G, Conti L et al (2013) Lesions of the biceps pulley as cause of anterosuperior impingement of the shoulder in the athlete: potentials and limits of MR arthrography compared with arthroscopy. Radiol Med 118:112–122.  https://doi.org/10.1007/s11547-012-0838-2 CrossRefPubMedGoogle Scholar
  25. 25.
    Barile A, Regis G, Masi R et al (2007) Musculoskeletal tumours: preliminary experience with perfusion MRI. Radiol Med 112:550–561.  https://doi.org/10.1007/s11547-007-0161-5 CrossRefPubMedGoogle Scholar
  26. 26.
    Barile A, Arrigoni F, Zugaro L et al (2017) Minimally invasive treatments of painful bone lesions: state of the art. Med Oncol.  https://doi.org/10.1007/s12032-017-0909-2 CrossRefPubMedGoogle Scholar
  27. 27.
    Masciocchi C, Conti L, D’Orazio F et al (2012) Errors in musculoskeletal MRI. In: Errors in radiology, pp 209–217CrossRefGoogle Scholar
  28. 28.
    Masciocchi C, Barile A, Lelli S, Calvisi V (2004) Magnetic resonance imaging (MRI) and arthro-MRI in the evaluation of the chondral pathology of the knee joint. Radiol Medica 108:149–158Google Scholar
  29. 29.
    Paparo F, Revelli M, Piccazzo R et al (2015) Extrusion of the medial meniscus in knee osteoarthritis assessed with a rotating clino-orthostatic permanent-magnet MRI scanner. Radiol Medica.  https://doi.org/10.1007/s11547-014-0444-6 CrossRefGoogle Scholar
  30. 30.
    Oei EHG, Wick MC, Müller-Lutz A et al (2018) Cartilage imaging: techniques and developments. Semin Musculoskelet Radiol 22:245–260.  https://doi.org/10.1055/s-0038-1639471 CrossRefPubMedGoogle Scholar
  31. 31.
    Demehri S, Hafezi-Nejad N, Carrino JA (2015) Conventional and novel imaging modalities in osteoarthritis: current state of the evidence. Curr Opin Rheumatol 27:295–303.  https://doi.org/10.1097/BOR.0000000000000163 CrossRefPubMedGoogle Scholar
  32. 32.
    Hunter DJ (2008) Advanced imaging in osteoarthritis. Bull NYU Hosp Jt Dis 66:251–260PubMedGoogle Scholar
  33. 33.
    Hafezi-Nejad N, Demehri S, Guermazi A, Carrino JA (2018) Osteoarthritis year in review 2017: updates on imaging advancements. Osteoarthr Cartil 26:341–349.  https://doi.org/10.1016/j.joca.2018.01.007 CrossRefPubMedGoogle Scholar
  34. 34.
    Peterfy CG, Guermazi A, Zaim S et al (2004) Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthr Cartil 12:177–190.  https://doi.org/10.1016/j.joca.2003.11.003 CrossRefPubMedGoogle Scholar
  35. 35.
    Casula V, Hirvasniemi J, Lehenkari P et al (2016) Association between quantitative MRI and ICRS arthroscopic grading of articular cartilage. Knee Surg Sport Traumatol Arthrosc 24:2046–2054.  https://doi.org/10.1007/s00167-014-3286-9 CrossRefGoogle Scholar
  36. 36.
    Li Q, Amano K, Link TM, Ma CB (2016) Advanced imaging in osteoarthritis. Sport Heal A Multidiscip Approach 8:418–428.  https://doi.org/10.1177/1941738116663922 CrossRefGoogle Scholar
  37. 37.
    Wilcox T, Hirshkowitz A (2015) NIH public access 85:1–27.  https://doi.org/10.1016/j.neuroimage.2013.08.045.the
  38. 38.
    Li X, Majumdar S (2013) Quantitative MRI of articular cartilage and its clinical applications. J Magn Reson Imaging 38:991–1008.  https://doi.org/10.1002/jmri.24313 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Li X, Majumdar S (2013) Quantitative MRI of articular cartilage and its clinical applications. J Magn Reson Imaging 38(5):991–1008CrossRefGoogle Scholar
  40. 40.
    Crema MD, Roemer FW, Marra MD et al (2011) Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics 31:37–61.  https://doi.org/10.1148/rg.311105084 CrossRefPubMedGoogle Scholar
  41. 41.
    Kijowski R, Chaudhary R (2014) Quantitative magnetic resonance imaging of the articular cartilage of the knee joint. Magn Reson Imaging Clin N Am 22:649–669.  https://doi.org/10.1016/j.mric.2014.07.005 CrossRefPubMedGoogle Scholar
  42. 42.
    Matzat SJ, van Tiel J, Gold GE, Oei EHG (2013) mQuantitative MRI techniques of cartilage coposition. Quant Imaging Med Surg 3:162–174.  https://doi.org/10.3978/j.issn.2223-4292.2013.06.04 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Binks DA, Hodgson RJ, Ries ME et al (2013) Quantitative parametric MRI of articular cartilage: a review of progress and open challenges. Br J Radiol.  https://doi.org/10.1259/bjr.20120163 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Eckstein F, Ateshian G, Burgkart R et al (2006) Proposal for a nomenclature for magnetic resonance imaging based measures of articular cartilage in osteoarthritis. Osteoarthr Cartil 14:974–983.  https://doi.org/10.1016/j.joca.2006.03.005 CrossRefPubMedGoogle Scholar
  45. 45.
    Link TM, Neumann J, Li X (2017) Prestructural cartilage assessment using MRI. J Magn Reson Imaging 45:949–965.  https://doi.org/10.1002/jmri.25554 CrossRefPubMedGoogle Scholar
  46. 46.
    Link TM (2011) Cartilage imaging: significance, techniques and new developments. Springer, BerlinCrossRefGoogle Scholar
  47. 47.
    Matzat SJ, Kogan F, Fong GW, Gold GE (2015) NIH public access.  https://doi.org/10.1007/s11926-014-0462-3.imaging
  48. 48.
    MacKay JW, Low SBL, Smith TO et al (2018) Systematic review and meta-analysis of the reliability and discriminative validity of cartilage compositional MRI in knee osteoarthritis. Osteoarthr Cartil 26:1140–1152.  https://doi.org/10.1016/j.joca.2017.11.018 CrossRefPubMedGoogle Scholar
  49. 49.
    Guermazi A, Alizai H, Crema MD et al (2015) Compositional MRI techniques for evaluation of cartilage degeneration in osteoarthritis. Osteoarthr Cartil 23:1639–1653.  https://doi.org/10.1016/j.joca.2015.05.026 CrossRefPubMedGoogle Scholar
  50. 50.
    Hayashi D, Roemer FW, Guermazi A (2018) Recent advances in research imaging of osteoarthritis with focus on MRI, ultrasound and hybrid imaging. Clin Exp Rheumatol 36:43–52PubMedGoogle Scholar
  51. 51.
    Shah N, Yoshioka H (2014) Imaging of articular cartilage. Cartil Restor Pract Clin Appl 24:17–37.  https://doi.org/10.1007/9781461404279_3 CrossRefGoogle Scholar
  52. 52.
    Exhibit S, Runge M (2011) Interest of MRI T2 mapping at 3T to detect cartilage lesion in the knee.  https://doi.org/10.1594/ecr2011/C-0675
  53. 53.
    Mosher TJ, Dardzinski BJ (2004) Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 8:355–368.  https://doi.org/10.1055/s-2004-861764 CrossRefPubMedGoogle Scholar
  54. 54.
    Hesper T, Hosalkar HS, Bittersohl D et al (2014) T2* mapping for articular cartilage assessment: principles, current applications, and future prospects. Skelet Radiol 43:1429–1445.  https://doi.org/10.1007/s00256-014-1852-3 CrossRefGoogle Scholar
  55. 55.
    Xu J, Xie G, Di Y et al (2011) Value of T2-mapping and DWI in the diagnosis of early knee cartilage injury. J Radiol Case Rep 5:1–5.  https://doi.org/10.3941/jrcr.v5i2.515 CrossRefGoogle Scholar
  56. 56.
    Genovese E, Angeretti MG, Ronga M, Leonardi A, Novario R, Callegari L, Fugazzola C (2017) Follow-up of collagen meniscus implants by MRI. La Radiol Medica 112(7):1036–1048.  https://doi.org/10.1007/s11547-007-0204-y CrossRefGoogle Scholar
  57. 57.
    Albano D, Martinelli N, Bianchi A et al (2017) Evaluation of reproducibility of the MOCART score in patients with osteochondral lesions of the talus repaired using the autologous matrix-induced chondrogenesis technique. Radiol Medica.  https://doi.org/10.1007/s11547-017-0794-y CrossRefGoogle Scholar
  58. 58.
    Barile A, La Marra A, Arrigoni F et al (2016) Anaesthetics, steroids and platelet-rich plasma (PRP) in ultrasound-guided musculoskeletal procedures. Br J Radiol.  https://doi.org/10.1259/bjr.20150355 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Shi WJ, Tjoumakaris FP, Lendner M, Freedman KB (2017) Biologic injections for osteoarthritis and articular cartilage damage: can we modify disease? Phys Sportsmed 45:203–223CrossRefGoogle Scholar
  60. 60.
    Recht MP, Goodwin DW, Winalski CS, White LM (2005) MRI of articular cartilage: revisiting current status and future directions. Am J Roentgenol 185:899–914CrossRefGoogle Scholar
  61. 61.
    Trattnig S, Domayer S, Welsch GW et al (2009) MR imaging of cartilage and its repair in the knee—a review. Eur Radiol 19:1582–1594CrossRefGoogle Scholar
  62. 62.
    Caumo F, Russo A, Faccioli N et al (2007) Autologous chondrocyte implantation: prospective MRI evaluation with clinical correlation. Radiol Med 112:722–731.  https://doi.org/10.1007/s11547-007-0175-z CrossRefPubMedGoogle Scholar
  63. 63.
    Welsch GH, Trattnig S, Scheffler K et al (2008) Magnetization transfer contrast and T2 mapping in the evaluation of cartilage repair tissue with 3T MRI. J Magn Reson Imaging 28:979–986.  https://doi.org/10.1002/jmri.21516 CrossRefPubMedGoogle Scholar
  64. 64.
    Kim YS, Choi YJ, Lee SW et al (2016) Assessment of clinical and MRI outcomes after mesenchymal stem cell implantation in patients with knee osteoarthritis: a prospective study. Osteoarthr Cartil 24:237–245.  https://doi.org/10.1016/j.joca.2015.08.009 CrossRefPubMedGoogle Scholar
  65. 65.
    Marlovits S, Singer P, Zeller P et al (2006) Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol.  https://doi.org/10.1016/j.ejrad.2005.08.007 CrossRefPubMedGoogle Scholar
  66. 66.
    Trattnig S, Winalski CS, Marlovits S, Jurvelin JS, Welsch GH, Potter HG (2011) Magnetic resonance imaging of cartilage repair: a review. Cartilage 2(1):5–26CrossRefGoogle Scholar

Copyright information

© Italian Society of Medical Radiology 2019

Authors and Affiliations

  • Federico Bruno
    • 1
  • Francesco Arrigoni
    • 1
  • Pierpaolo Palumbo
    • 1
  • Raffaele Natella
    • 2
  • Nicola Maggialetti
    • 3
  • Alfonso Reginelli
    • 2
  • Alessandra Splendiani
    • 1
  • Ernesto Di Cesare
    • 1
  • Luca Brunese
    • 3
  • Giuseppe Guglielmi
    • 4
  • Andrea Giovagnoni
    • 5
  • Carlo Masciocchi
    • 1
  • Antonio Barile
    • 1
    Email author
  1. 1.Department of Biotechnological and Applied Clinical SciencesUniversity of L’AquilaL’AquilaItaly
  2. 2.Department of Precision MedicineUniversity of Campania “Luigi Vanvitelli”NaplesItaly
  3. 3.Department Life and Health “V. Tiberio”University of MoliseCampobassoItaly
  4. 4.Department of Radiology, Scientific Institute “Casa Sollievo della Sofferenza” HospitalUniversity of FoggiaFoggiaItaly
  5. 5.Department of Radiology, Ospedali RiunitiUniversità Politecnica delle MarcheAnconaItaly

Personalised recommendations