Advertisement

La radiologia medica

, Volume 123, Issue 11, pp 827–832 | Cite as

Periradicular infiltration of the lumbar spine: is iterative reconstruction software necessary to establish ultra-low-dose protocols? A quantitative and qualitative approach

  • Fabian Henry Jürgen Elsholtz
  • Lars-Arne Schaafs
  • Christoph Erxleben
  • Bernd Hamm
  • Stefan Markus Niehues
COMPUTED TOMOGRAPHY
  • 51 Downloads

Abstract

Purpose

Computed tomography (CT)-guided periradicular infiltration therapy has emerged as an effective treatment option for patients with low back pain. Concern about radiation exposure requires approaches allowing significant dose reduction. The purpose of this study is to evaluate the need for iterative reconstruction software in CT-guided periradicular infiltration therapy with an ultra-low-dose protocol.

Materials and methods

One hundred patients underwent CT-guided periradicular infiltration therapy of the lumbar spine using an ultra-low-dose protocol with adaptive iterative dose reduction 3D (AIDR 3D) for image reconstruction. In addition, images were reconstructed with filtered back-projection (FBP). Four experienced raters evaluated both reconstruction types for conspicuity of anatomical and instrumental features important for ensuring safe patient treatment. Image noise was measured as a quantitative marker of image quality.

Results

Interrater agreement was good for both AIDR 3D (Kendall’s W = 0.83) and FBP (0.78) reconstructions. Readers assigned the same scores for all features and both reconstruction algorithms in 81.3% of cases. Image noise was significantly lower (average SD of 60.07 vs. 99.54, p < 0.05) for AIDR 3D-reconstructed images.

Conclusion

Although it significantly lowers image noise, iterative reconstruction software is not mandatory to achieve adequate image quality with an ultra-low-dose CT protocol for guiding periradicular infiltration therapy of the lumbar spine.

Keywords

Computed tomography (CT) Interventional Spine Dosimetry 

Notes

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Zener R, Johnson P, Wiseman D, Pandey S, Mujoomdar A (2018) Informed consent for radiation in interventional radiology procedures. Can Assoc Radiol J 69(1):30–37.  https://doi.org/10.1016/j.carj.2017.07.002 CrossRefPubMedGoogle Scholar
  2. 2.
    Elsholtz FHJ, Schaafs LA, Erxleben C, Hamm B, Niehues SM (2017) Ultra-low-dose periradicular infiltration of the lumbar spine: spot scanning and its potential for further dose reduction by replacing helical planning CT. La Radiol Med.  https://doi.org/10.1007/s11547-017-0766-2 CrossRefGoogle Scholar
  3. 3.
    Trattner S, Pearson GD, Chin C, Cody DD, Gupta R, Hess CP, Kalra MK, Kofler JM Jr, Krishnam MS, Einstein AJ (2014) Standardization and optimization of CT protocols to achieve low dose. J Am Coll Radiol JACR 11(3):271–278.  https://doi.org/10.1016/j.jacr.2013.10.016 CrossRefPubMedGoogle Scholar
  4. 4.
    Thakur Y, Bjarnason TA, Baxter P, Griffith M, Eaton K (2016) Radiation dose survey for common computed tomography exams: 2013 British Columbia results. Can Assoc Radiol 67(1):88–95.  https://doi.org/10.1016/j.carj.2015.07.002 CrossRefGoogle Scholar
  5. 5.
    Willemink MJ, de Jong PA, Leiner T, de Heer LM, Nievelstein RA, Budde RP, Schilham AM (2013) Iterative reconstruction techniques for computed tomography Part 1: technical principles. Eur Radiol 23(6):1623–1631.  https://doi.org/10.1007/s00330-012-2765-y CrossRefPubMedGoogle Scholar
  6. 6.
    Irwan B NS, Blum A (2012) AIDR 3D—reduces dose and simultaneously improves image quality. Toshiba Medical Systems WhitepaperGoogle Scholar
  7. 7.
    Gervaise A, Osemont B, Lecocq S, Noel A, Micard E, Felblinger J, Blum A (2012) CT image quality improvement using adaptive iterative dose reduction with wide-volume acquisition on 320-detector CT. Eur Radiol 22(2):295–301.  https://doi.org/10.1007/s00330-011-2271-7 CrossRefPubMedGoogle Scholar
  8. 8.
    Blobel J, Mews J, Schuijf JD, Overlaet W (2013) Determining the radiation dose reduction potential for coronary calcium scanning with computed tomography: an anthropomorphic phantom study comparing filtered backprojection and the adaptive iterative dose reduction algorithm for image reconstruction. Invest Radiol 48(12):857–862.  https://doi.org/10.1097/RLI.0b013e31829e3932 CrossRefPubMedGoogle Scholar
  9. 9.
    Tatsugami F, Matsuki M, Nakai G, Inada Y, Kanazawa S, Takeda Y, Morita H, Takada H, Yoshikawa S, Fukumura K, Narumi Y (2012) The effect of adaptive iterative dose reduction on image quality in 320-detector row CT coronary angiography. Br J Radiol 85(1016):e378–382.  https://doi.org/10.1259/bjr/10084599 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Juri H, Tsuboyama T, Kumano S, Inada Y, Koyama M, Azuma H, Narumi Y (2016) Detection of bladder cancer: comparison of low-dose scans with AIDR 3D and routine-dose scans with FBP on the excretory phase in CT urography. Br J Radiol 89(1058):20150495.  https://doi.org/10.1259/bjr.20150495 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Mirsadraee S, Weir NW, Connolly S, Murchison JT, Reid JH, Hirani N, Connell M, van Beek EJ (2015) Feasibility of radiation dose reduction using AIDR-3D in dynamic pulmonary CT perfusion. Clin Radiol 70(8):844–851.  https://doi.org/10.1016/j.crad.2015.04.004 CrossRefPubMedGoogle Scholar
  12. 12.
    Wallihan DB, Podberesky DJ, Sullivan J, Denson LA, Zhang B, Salisbury SR, Towbin AJ (2015) Diagnostic performance and dose comparison of filtered back projection and adaptive iterative dose reduction three-dimensional CT enterography in children and young adults. Radiology 276(1):233–242.  https://doi.org/10.1148/radiol.14140468 CrossRefPubMedGoogle Scholar
  13. 13.
    Gervaise A, Osemont B, Louis M, Lecocq S, Teixeira P, Blum A (2014) Standard dose versus low-dose abdominal and pelvic CT: comparison between filtered back projection versus adaptive iterative dose reduction 3D. Diagn Interven Imaging 95(1):47–53.  https://doi.org/10.1016/j.diii.2013.05.005 CrossRefGoogle Scholar
  14. 14.
    Joemai RM, Veldkamp WJ, Kroft LJ, Hernandez-Giron I, Geleijns J (2013) Adaptive iterative dose reduction 3D versus filtered back projection in CT: evaluation of image quality. AJR Am J Roentgenol 201(6):1291–1297.  https://doi.org/10.2214/ajr.12.9780 CrossRefPubMedGoogle Scholar
  15. 15.
    Matsuki M, Murakami T, Juri H, Yoshikawa S, Narumi Y (2013) Impact of adaptive iterative dose reduction (AIDR) 3D on low-dose abdominal CT: comparison with routine-dose CT using filtered back projection. Acta Radiol (Stockholm, Sweden: 1987) 54(8):869–875.  https://doi.org/10.1177/0284185113488576 CrossRefGoogle Scholar
  16. 16.
    Christner JA, Kofler JM, McCollough CH (2010) Estimating effective dose for CT using dose-length product compared with using organ doses: consequences of adopting international commission on radiological protection publication 103 or dual-energy scanning. AJR Am J Roentgenol 194(4):881–889.  https://doi.org/10.2214/ajr.09.3462 CrossRefPubMedGoogle Scholar
  17. 17.
    Noël PB, Renger B, Fiebich M, Münzel D, Fingerle AA, Rummeny EJ, Dobritz M (2013) Does iterative reconstruction lower CT radiation dose: evaluation of 15,000 examinations. PLoS ONE.  https://doi.org/10.1371/journal.pone.0081141 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wu TH, Hung SC, Sun JY, Lin CJ, Lin CH, Chiu CF, Liu MJ, Teng MM, Guo WY, Chang CY (2013) How far can the radiation dose be lowered in head CT with iterative reconstruction? Analysis of imaging quality and diagnostic accuracy. Eur Radiol 23(9):2612–2621.  https://doi.org/10.1007/s00330-013-2846-6 CrossRefPubMedGoogle Scholar
  19. 19.
    Geyer LL, Glenn GR, De Cecco CN, Van Horn M, Canstein C, Silverman JR, Krazinski AW, Kemper JM, Bucher A, Ebersberger U, Costello P, Bamberg F, Schoepf UJ (2015) CT evaluation of small-diameter coronary artery stents: effect of an integrated circuit detector with iterative reconstruction. Radiology 276(3):706–714.  https://doi.org/10.1148/radiol.15140427 CrossRefPubMedGoogle Scholar
  20. 20.
    Schretter C, Rose G, Bertram M (2009) Image-based iterative compensation of motion artifacts in computed tomography. Med Phys 36(11):5323–5330.  https://doi.org/10.1118/1.3244035 CrossRefPubMedGoogle Scholar
  21. 21.
    Korbe S, Udoji EN, Ness TJ, Udoji MA (2015) Ultrasound-guided interventional procedures for chronic pain management. Pain Manag 5(6):465–482.  https://doi.org/10.2217/pmt.15.46 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Loizides A, Gruber H, Peer S, Galiano K, Bale R, Obernauer J (2013) Ultrasound guided versus CT-controlled pararadicular injections in the lumbar spine: a prospective randomized clinical trial. AJNR Am J Neuroradiol 34(2):466–470.  https://doi.org/10.3174/ajnr.A3206 CrossRefPubMedGoogle Scholar

Copyright information

© Italian Society of Medical Radiology 2018

Authors and Affiliations

  1. 1.Klinik und Hochschulambulanz für RadiologieCharité- Universitätsmedizin Berlin, Campus Benjamin FranklinBerlinGermany

Personalised recommendations