La radiologia medica

, Volume 123, Issue 10, pp 765–777 | Cite as

Radiation dose in non-dental cone beam CT applications: a systematic review

  • Cosimo Nardi
  • Sergio Salerno
  • Roberto Molteni
  • Mariaelena Occhipinti
  • Giulia Grazzini
  • Niccolò Norberti
  • Cesare Cordopatri
  • Stefano ColagrandeEmail author



Radiation-induced health risks are broadly questioned in the literature. As cone beam computed tomography (CBCT) is increasingly used in non-dental examinations, its effective dose needs to be known. This study aimed to review the published evidence on effective dose of non-dental CBCT for diagnostic use by focusing on dosimetry system used to estimate dose.

Materials and methods

A systematic review of the literature was performed on 12 November 2017. All the literature up to this date was included. The PubMed and web of science databases were searched. Studies were screened for inclusion based on defined inclusion and exclusion criteria according to the preferred reporting items for systematic reviews.


Fifteen studies met the inclusion criteria and were included in our review. Thirteen and two of them examined one and two anatomical areas, respectively. The anatomical areas were: ear (6), paranasal sinuses (4), ankle (3), wrist (2), knee (1), and cervical spine (1). Effective dose was estimated by different methods: (i) RANDO phantom associated with thermoluminescent dosimeters (6), metal oxide semiconductor field-effect transistor dosimeters (3), and optically stimulated luminescent dosimeters (1). (ii) Scanner outputs, namely computed tomography dose index (1) and dose area product (2). (iii) Monte Carlo simulations (2).


CBCT of extremities, cervical spine, ears and paranasal sinuses was found to be a low-dose volumetric imaging technique. Effective doses varied significantly because of different exposure settings of CBCT-units and different dosimetry systems used to estimate dose.


Radiation dosage Effective dose Cone beam computed tomography Head and neck imaging Skeletal imaging 


Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Ahmad M, Jenny J, Downie M (2012) Application of cone beam computed tomography in oral and maxillofacial surgery. Aust Dent J 57:82–94CrossRefPubMedGoogle Scholar
  2. 2.
    Bornstein MM, Horner K, Jacobs R (2017) Use of cone beam computed tomography in implant dentistry: current concepts, indications and limitations for clinical practice and research. Periodontology 73:51–72CrossRefGoogle Scholar
  3. 3.
    Nardi C, De Falco L, Selvi V, Lorini C, Calistri L, Colagrande S (2018) Role of cone beam computed tomography with a large field of view in Goldenhar syndrome. Am J Orthod Dentofac Orthop 153:269–277CrossRefGoogle Scholar
  4. 4.
    Chang E, Lam E, Shah P, Azarpazhooh A (2016) Cone-beam computed tomography for detecting vertical root fractures in endodontically treated teeth: a systematic review. J Endod 42:177–185CrossRefPubMedGoogle Scholar
  5. 5.
    Sironi E, Taroni F, Baldinotti C, Nardi C, Norelli GA, Gallidabino M, Pinchi V (2018) Age estimation by assessment of pulp chamber volume: a Bayesian network for the evaluation of dental evidence. Int J Legal Med. CrossRefPubMedGoogle Scholar
  6. 6.
    Nguyen TD, Kösling S, Mlynski R, Plontke SK (2016) Visualisation of passive middle ear implants by cone beam and multi-detector computed tomography: a comparative in vitro study. Eur Radiol 26:4538–4544CrossRefPubMedGoogle Scholar
  7. 7.
    Parks ET (2014) Cone beam computed tomography for the nasal cavity and paranasal sinuses. Dent Clin North Am 58:627–651CrossRefPubMedGoogle Scholar
  8. 8.
    Nardi C, Buzzi R, Molteni R, Cossi C, Lorini C, Calistri L, Colagrande S (2017) The role of Cone Beam CT in the study of symptomatic total knee arthroplasty (TKA): a 20 cases report. Br J Radiol 90:20160925CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Nemtoi A, Czink C, Haba D, Gahleitner A (2013) Cone beam CT: a current overview of devices. Dentomaxillofac Radiol 42:20120443CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Thawait GK, Demehri S, AlMuhit A et al (2015) Extremity cone-beam CT for evaluation of medial tibiofemoral osteoarthritis: Initial experience in imaging of the weight-bearing and non-weight-bearing knee. Eur J Radiol 84:2564–2570CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ludlow JB, Timothy R, Walker C, Hunter R, Benavides E, Samuelson DB, Scheske MJ (2014) Effective dose of dental CBCT—a meta analysis of published data and additional data for nine CBCT units. Dentomaxillofac Radiol 15:20140197Google Scholar
  12. 12.
    Nardi C, Borri C, Regini F, Calistri L, Castellani A, Lorini C, Colagrande S (2015) Metal and motion artifacts by cone beam computed tomography (CBCT) in dental and maxillofacial study. Radiol Med 120:618–626CrossRefPubMedGoogle Scholar
  13. 13.
    Watanabe H, Honda E, Tetsumura A, Kurabayashi T (2011) A comparative study for spatial resolution and subjective image characteristics of a multi-slice CT and a cone-beam CT for dental use. Eur J Radiol 77:397–402CrossRefPubMedGoogle Scholar
  14. 14.
    Christell H, Birch S, Hedesiu M et al (2012) Variation in costs of cone beam CT examinations among healthcare systems. Dentomaxillofac Radiol 41:571–577CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lechuga L, Weidlich GA (2016) Cone beam CT vs. fan beam CT: a comparison of image quality and dose delivered between two differing CT imaging modalities. Cureus 8:778Google Scholar
  16. 16.
    Nardi C, Molteni R, Lorini C, Taliani GG, Matteuzzi B, Mazzoni E, Colagrande S (2016) Motion artefacts in cone beam CT: an in vitro study about the effects on the images. Br J Radiol 89:20150687CrossRefPubMedGoogle Scholar
  17. 17.
    Fazel R, Krumholz HM, Wang Y et al (2009) Exposure to low-dose ionizing radiation from medical imaging procedures in the United States. N Engl J Med 361:849–857CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hendee WR, O’Connor MK (2012) Radiation risks of medical imaging: separating fact from fantasy. Radiology 264:312–321CrossRefPubMedGoogle Scholar
  19. 19.
    Colagrande S, Origgi D, Zatelli G, Giovagnoni A, Salerno S (2014) CT exposure in adult and paediatric patients: a review of the mechanisms of damage, relative dose and consequent possible risks. Radiol Med 119:803–810CrossRefPubMedGoogle Scholar
  20. 20.
  21. 21.
    Council Directive 2013/59/Euratom of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. Accessed Feb 2018
  22. 22.
    Saltybaeva N, Jafari ME, Hupfer M, Kalender WA (2014) Estimates of effective dose for CT scans of the lower extremities. Radiology 273:153–159CrossRefPubMedGoogle Scholar
  23. 23.
    McCollough CH, Leng S, Yu L, Cody DD, Boone JM, McNitt-Gray MF (2011) CT dose index and patient dose: they are not the same thing. Radiology 259:311–316CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Al-Okshi A, Lindh C, Salé H, Gunnarsson M, Rohlin M (2015) Effective dose of cone beam CT (CBCT) of the facial skeleton: a systematic review. Br J Radiol 88:20140658CrossRefPubMedGoogle Scholar
  25. 25.
    Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 62:1006–1012CrossRefGoogle Scholar
  26. 26.
    Valentin J (2007) International Commission on Radiological Protection. Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann ICRP 37. ElsevierGoogle Scholar
  27. 27.
    Dierckx D, Saldarriaga Vargas C, Rogge F, Lichtherte S, Struelens L (2015) Dosimetric analysis of the use of CBCT in diagnostic radiology: sinus and middle ear. Radiat Prot Dosim 163:125–132CrossRefGoogle Scholar
  28. 28.
    Faccioli N, Barillari M, Guariglia S, Zivelonghi E, Rizzotti A, Cerini R, Mucelli RP (2009) Radiation dose saving through the use of cone-beam CT in hearing-impaired patients. Radiol Med 114:1308–1318CrossRefPubMedGoogle Scholar
  29. 29.
    Ruivo J, Mermuys K, Bacher K, Kuhweide R, Offeciers E, Casselman JW (2009) Cone beam computed tomography, a low-dose imaging technique in the postoperative assessment of cochlear implantation. Otol Neurotol 30:299–303CrossRefPubMedGoogle Scholar
  30. 30.
    Peltonen LI, Aarnisalo AA, Kortesniemi MK, Suomalainen A, Jero J, Robinson S (2007) Limited cone-beam computed tomography imaging of the middle ear: a comparison with multislice helical computed tomography. Acta Radiol 48:207–212CrossRefPubMedGoogle Scholar
  31. 31.
    Zou J, Koivisto J, Lähelmä J, Aarnisalo A, Wolff J, Pyykkö I (2015) Imaging optimization of temporal bones with cochlear implant using a high-resolution cone beam ct and the corresponding effective dose. Ann Otol Rhinol Laryngol 124:466–473CrossRefPubMedGoogle Scholar
  32. 32.
    Nardi C, Talamonti C, Pallotta S, Saletti P, Calistri L, Cordopatri C, Colagrande S (2017) Head and neck effective dose and quantitative assessment of image quality: a study to compare cone beam CT and multislice spiral CT. Dentomaxillofac Radiol 46:20170030CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Almashraqi AA, Ahmed EA, Mohamed NS, Barngkgei IH, Elsherbini NA, Halboub ES (2017) Evaluation of different low-dose multidetector CT and cone beam CT protocols in maxillary sinus imaging: part I-an in vitro study. Dentomaxillofac Radiol 46:20160323CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Al Abduwani J, ZilinSkiene L, Colley S, Ahmed S (2016) Cone beam CT paranasal sinuses versus standard multidetector and low dose multidetector CT studies. Am J Otolaryngol 37:59–64CrossRefPubMedGoogle Scholar
  35. 35.
    Koivisto J, Kiljunen T, Kadesjö N, Shi XQ, Wolff J (2015) Effective radiation dose of a MSCT, two CBCT and one conventional radiography device in the ankle region. J Foot Ankle Res 8:8CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ludlow J, Ivanovic M (2014) Weightbearing CBCT, MDCT, and 2D imaging dosimetry of the foot and ankle. Int J Diagn Imaging 1:2CrossRefGoogle Scholar
  37. 37.
    Pugmire BS, Shailam R, Sagar P, Liu B, Li X, Palmer WE, Huang AJ (2016) Initial clinical experience with extremity cone-beam CT of the foot and ankle in pediatric patients. Am J Roentgenol 206:431–435CrossRefGoogle Scholar
  38. 38.
    Koskinen SK, Haapamäki VV, Salo J, Lindfors NC, Kortesniemi M, Seppälä L, Huang AJ (2013) CT arthrography of the wrist using a novel, mobile, dedicated extremity cone-beam CT (CBCT). Skeletal Radiol 42:649–657CrossRefPubMedGoogle Scholar
  39. 39.
    de Charry C, Boutroy S, Ellouz R, Duboeuf F, Chapurlat R, Follet H, Pialat JB (2016) Clinical cone beam computed tomography compared to high-resolution peripheral computed tomography in the assessment of distal radius bone. Osteoporos Int 27:3073–3082CrossRefPubMedGoogle Scholar
  40. 40.
    Koivisto J, Kiljunen T, Wolff J, Kortesniemi M (2013) Assessment of effective radiation dose of an extremity CBCT, MSCT and conventional X ray for knee area using MOSFET dosemeters. Radiat Prot Dosim 157:515–524CrossRefGoogle Scholar
  41. 41.
    Bacher K, Mermuys K, Casselman J, Thierens H (2009) Evaluation of effective patient dose in paranasal sinus imaging: comparison of cone beam CT, digital tomosynthesis and multi slice CT. In: Dössel O, Schlegel WC (eds) World congress on medical physics and biomedical engineering, Munich, Germany. IFMBE proceedings, vol 25/3. Springer, BerlinGoogle Scholar
  42. 42.
    Koivisto J, Schulze D, Wolff J, Rottke D (2014) Effective dose assessment in the maxillofacial region using thermoluminescent (TLD) and metal oxide semiconductor field-effect transistor (MOSFET) dosemeters: a comparative study. Dentomaxillofac Radiol 43:20140202CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Yoshizumi TT, Goodman PC, Frush DP, Nguyen G, Toncheva G, Sarder M, Barnes L (2007) Validation of metal oxide semiconductor field effect transistor technology for organ dose assessment during CT: comparison with thermoluminescent dosimetry. Am J Roentgenol 188:1332–1336CrossRefGoogle Scholar
  44. 44.
    Butson M, Haque M, Smith L et al (2017) Practical time considerations for optically stimulated luminescent dosimetry (OSLD) in total body irradiation. Australas Phys Eng Sci Med 40:167–171CrossRefPubMedGoogle Scholar
  45. 45.
    Scarboro SB, Cody D, Alvarez P et al (2015) Characterization of the nanoDot OSLD dosimeter in CT. Med Phys 42:1797–1807CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    American Association of Physicists in Medicine (2010) Report of AAPM Task Group 111: the future of CT dosimetry—comprehensive methodology for the evaluation of radiation dose in X-ray computed tomography. American Association of Physicists in Medicine, College ParkGoogle Scholar
  47. 47.
    Boone JM, McNitt-Gray MF, Hernandez AM (2017) Monte Carlo basics for radiation dose assessment in diagnostic radiology. J Am Coll Radiol 14:793–794CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Huda W, Gkanatsios N (1998) Radiation dosimetry for extremity radiographs. Health Phys 75:492–499CrossRefPubMedGoogle Scholar
  49. 49.
    Hart D, Wall BF (2002) Radiation exposure of the UK population from medical and dental X-ray examinations; report NRPB-W4; National Radiological Protection Board, UKGoogle Scholar
  50. 50.
    Neubauer J, Benndorf M, Reidelbach C et al (2016) Comparison of diagnostic accuracy of radiation dose-equivalent radiography, multidetector computed tomography and cone beam computed tomography for fractures of adult cadaveric wrists. PLoS ONE 11:e0164859CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Nardi C, Taliani GG, Castellani A, De Falco L, Selvi V, Calistri L (2017) Repetition of examination due to motion artifacts in horizontal cone beam CT: comparison among three different kinds of head support. J Int Soc Prevent Commun Dent 7:208–213Google Scholar
  52. 52.
    Spin-Neto R, Matzen LH, Schropp L, Gotfredsen E, Wenzel A (2015) Factors affecting patient movement and re-exposure in cone beam computed tomography examination. Oral Surg Oral Med Oral Pathol Oral Radiol 119:572–578CrossRefPubMedGoogle Scholar
  53. 53.
    LeQuire AK, Cunningham CJ, Pelleu GB Jr (1977) Radiographic interpretation of experimentally produced osseous lesions of the human mandible. J Endod 3:274–276CrossRefPubMedGoogle Scholar
  54. 54.
    Vanhoenacker FM, Bernaerts A, Gielen J, Schepens E, De Schepper AM (2002) Trauma of the pediatric ankle and foot. JBR-BTR 85:212–218PubMedGoogle Scholar
  55. 55.
    Osgood GM, Thawait GK, Hafezi-Nejad N et al (2017) Image quality of cone beam computed tomography for evaluation of extremity fractures in the presence of metal hardware: visual grading characteristics analysis. Br J Radiol 90:20160539CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Lang H, Neubauer J, Fritz B, Spira EM, Strube J, Langer M, Kotter E (2016) A retrospective, semi-quantitative image quality analysis of cone beam computed tomography (CBCT) and MSCT in the diagnosis of distal radius fractures. Eur Radiol 26:4551–4561CrossRefPubMedGoogle Scholar
  57. 57.
    Vetter SY, Euler F, von Recum J, Wendl K, Grützner PA, Franke J (2016) Impact of intraoperative cone beam computed tomography on reduction quality and implant position in treatment of tibial plafond fractures. Foot Ankle Int 37:977–982CrossRefPubMedGoogle Scholar
  58. 58.
    Faccioli N, Foti G, Barillari M, Atzei A, Mucelli RP (2010) Finger fractures imaging: accuracy of cone-beam computed tomography and multislice computed tomography. Skeletal Radiol 39:1087–1095CrossRefPubMedGoogle Scholar
  59. 59.
    Nickoloff EL, Dutta AK, Lu ZF (2003) Influence of phantom diameter, kVp and scan mode upon computed tomography dose index. Med Phys 30:395–402CrossRefPubMedGoogle Scholar
  60. 60.
    Siegel MJ, Schmidt B, Bradley D, Suess C, Hildebolt C (2004) Radiation dose and image quality in pediatric CT: effect of technical factors and phantom size and shape. Radiology 233:515–522CrossRefPubMedGoogle Scholar
  61. 61.
    DeMarco JJ, Cagnon CH, Cody DD et al (2007) Estimating radiation doses from multidetector CT using Monte Carlo simulations: effects of different size voxelized patient models on magnitudes of organ and effective dose. Phys Med Biol 52:2583–2597CrossRefPubMedGoogle Scholar
  62. 62.
    Turner AC, Zankl M, DeMarco JJ et al (2010) The feasibility of a scanner-independent technique to estimate organ dose from MDCT scans: using CTDIvol to account for differences between scanners. Med Phys 37:1816–1825CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Tschauner S, Marterer R, Nagy E et al (2017) Surface radiation dose comparison of a dedicated extremity cone beam computed tomography (CBCT) device and a multidetector computed tomography (MDCT) machine in pediatric ankle and wrist phantoms. PLoS ONE 12:e0178747CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Li X, Samei E, Segars WP, Sturgeon GM, Colsher JG, Frush DP (2011) Patient-specific radiation dose and cancer risk for pediatric chest CT. Radiology 259:862–874CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Martin CJ (2007) Effective dose: how should it be applied to medical exposures? Br J Radiol 80:639–647CrossRefPubMedGoogle Scholar
  66. 66.
    Lee C, Flynn MJ, Judy PF, Cody DD, Bolch WE, Kruger RL (2017) Body size-specific organ and effective doses of chest CT screening examinations of the national lung screening trial. Am J Roentgenol 208:1082–1088CrossRefGoogle Scholar
  67. 67.
    Newman B, Ganguly A, Kim JE, Robinson T (2012) Comparison of different methods of calculating CT radiation effective dose in children. Am J Roentgenol 199:232–239CrossRefGoogle Scholar

Copyright information

© Italian Society of Medical Radiology 2018

Authors and Affiliations

  • Cosimo Nardi
    • 1
  • Sergio Salerno
    • 2
  • Roberto Molteni
    • 3
  • Mariaelena Occhipinti
    • 4
  • Giulia Grazzini
    • 1
  • Niccolò Norberti
    • 1
  • Cesare Cordopatri
    • 1
  • Stefano Colagrande
    • 1
    Email author
  1. 1.Department of Experimental and Clinical Biomedical Sciences, Radiodiagnostic Unit n. 2University of Florence - Azienda Ospedaliero-Universitaria CareggiFlorenceItaly
  2. 2.Department of RadiologyUniversity Hospital Paolo Giaccone of PalermoPalermoItaly
  3. 3.Skanray EuropeSan Lazzaro di SavenaItaly
  4. 4.Department of Experimental and Clinical Medicine, Section of Respiratory MedicineUniversity of Florence - Azienda Ospedaliero-Universitaria CareggiFlorenceItaly

Personalised recommendations