La radiologia medica

, Volume 123, Issue 8, pp 601–608 | Cite as

Mandibular canal branching assessed with cone beam computed tomography

  • Mauricio Augusto Aquino de Castro
  • Sâmila Gonçalves BarraEmail author
  • Manuel Oscar Lagravere Vich
  • Mauro Henrique Guimaraes Abreu
  • Ricardo Alves Mesquita



The mandibular canal must be considered in dental procedures to avoid injuries of the alveolar inferior nerve. The occurrence of anatomical variations of the mandibular canal increases the risk of neurovascular injuries. The purpose of this study was to identify and describe the prevalence of mandibular canal branching (MCB) using cone beam computer tomography (CBCT).


Seven hundred standardized CBCTs were selected. The images were evaluated for the presence of MCB and for the detection of pathologies that could affect the structure of the canals. The data were analyzed using descriptive statistics and the Chi-squared test.


The prevalence of MCB was 41.1%. There was no statistical difference between genders with the presence of the branches (p > 0.005). The highest prevalence was in the premolar and retromolar regions. Pathologies found in the molar region were frequently connected with MCB (77.8%), and the most common pathology related to branches was periapical lesion.


Mandibular canal branching presented a high prevalence in CBCT imagery, more frequently located in regions of the premolar and retromolar. An adequate diagnosis of the MCB is necessary to perform dental procedures and verify possible associated pathologies.


Cone beam computed tomography Mandibular canal Mandible Inferior alveolar nerve Bifid mandibular canal 


Compliance with ethical standards

Conflict of interest

The authors of the article “Mandibular canal branching assessed with cone beam computed tomography” declare that they have no conflict of interest regarding the study.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Kieser J, Kieser D, Hauman T (2005) The course and distribution of the inferior alveolar nerve in the edentulous mandible. J Craniofac Surg 16:6–9. CrossRefPubMedGoogle Scholar
  2. 2.
    Langlais RP, Broadus R, Glass BJ (1985) Bifid mandibular canals in panoramic radiographs. J Am Dent Assoc 110:923–926CrossRefPubMedGoogle Scholar
  3. 3.
    Naitoh M, Hiraiwa Y, Aimiya H, Ariji E (2009) Observation of bifid mandibular canal using cone-beam computerized tomography. Int J Oral Maxillofac Implants 24:155–159PubMedGoogle Scholar
  4. 4.
    Claeys V, Wackens G (2005) Bifid mandibular canal: literature review and case report. DentomaxillofacRadiol 34:55–58. CrossRefGoogle Scholar
  5. 5.
    Durst JH, Snow JE (1980) Multiple mandibular canals: oddities or fairly common anomalies? Oral Surg Oral Med Oral Pathol 49:272–273. CrossRefPubMedGoogle Scholar
  6. 6.
    Kang JH, Lee KS, Oh MG, Choi HY, Lee SR, Oh SH, Choi YJ, Kim GT, Choi YS, Hwang EH (2014) The incidence and configuration of the bifid mandibular canal in Koreans by using cone-beam computed tomography. Imaging Sci Dent 44:53–60. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kuribayashi A, Watanabe H, Imaizumi A, Tantanapornkul W, Katakami K, Kurabayashi T (2010) Bifid mandibular canals: cone beam computed tomography evaluation. Dentomaxillofac Radiol 39:235–239. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mizbah K, Gerlach N, Maal TJ, Bergé SJ, Meijer GJ (2012) The clinical relevance of bifid and trifid mandibular canals. Oral Maxillofac Surg 16:147–151. CrossRefPubMedGoogle Scholar
  9. 9.
    Muinelo-Lorenzo J, Suárez-Quintanilla JA, Fernández-Alonso A, Marsillas-Rascado S, Suárez-Cunqueiro MM (2014) Descriptive study of the bifid mandibular canals and retromolar foramina: cone beam CTvs panoramic radiography. Dentomaxillofac Radiol 43:20140090. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Rouas P, Nancy J, Bar D (2007) Identification of double mandibular canals: literature review and three case reports with CT scans and cone beam CT. Dentomaxillofac Radiol 36:34–38. CrossRefPubMedGoogle Scholar
  11. 11.
    Chávez-Lomeli ME, MansillaLory J, Pompa JA, Kjaer I (1996) The human mandibular canal arises from three separate canals innervating different tooth groups. J Dent Res 75:1540–1544. CrossRefPubMedGoogle Scholar
  12. 12.
    de Oliveira-Santos C, Souza PH, de Azambuja Berti-Couto S, Stinkens L, Moyaert K, Rubira-Bullen IRF, Jacobs R (2012) Assessment of variations of the mandibular canal through cone beam computed tomography. Clin Oral Investig 16:387–393. CrossRefPubMedGoogle Scholar
  13. 13.
    Al Orhan, Orhan K, Aksoy S, Ozqül O, Horasan S, Arslan A, Kocyigit D (2013) Evaluation of perimandibular neurovascularization with accessory mental foramina using cone-beam computed tomography in children. J CraniofacSurg 24:e365–e369. CrossRefGoogle Scholar
  14. 14.
    Fu E, Peng M, Chiang CY, Tu HP, Lin YS, Shen EC (2014) Bifid mandibular canals and the factors associated with their presence: a medical computed tomography evaluation in a Taiwanese population. Clin Oral Implants 25:e64–e67. CrossRefGoogle Scholar
  15. 15.
    Grover PS, Lorton L (1983) Bifid mandibular nerve as a possible cause of inadequate anesthesia in the mandible. J Oral Maxillofac Surg 41:177–179. CrossRefPubMedGoogle Scholar
  16. 16.
    Kim TS, Caruso JM, Christensen H, Torabinejad M (2010) A comparison of cone-beam computed tomography and direct measurement in the examination of the mandibular canal and adjacent structures. J Endod 36:1191–1194. CrossRefPubMedGoogle Scholar
  17. 17.
    Nortjé CJ, Farman AG, Grotepass FW (1977) Variations in the normal anatomy of the inferior dental (mandibular) canal: a retrospective study of panoramic radiographs from 3612 routine dental patients. Br J Oral Surg 15:55–63. CrossRefPubMedGoogle Scholar
  18. 18.
    Neves FS, Torres MG, Oliveira C, Campos PS, Crusoé-Rebello I (2010) Lingual accessory mental foramen: a report of an extremely rare anatomical variation. J Oral Sci 52:501–503. CrossRefPubMedGoogle Scholar
  19. 19.
    Sanchis JM, Peñarrocha M, Soler F (2003) Bifid mandibular canal. J Oral Maxillofac Surg 61:422–424. CrossRefPubMedGoogle Scholar
  20. 20.
    Fukami K, Shiozaki K, Mishima A, Kuribayashi A, Hamada Y, Kobayashi K (2012) Bifid mandibular canal: confirmation of limited cone beam CT findings by gross anatomical and histological investigations. Dentomaxillofac Radiol 41:460–465. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Buric N, Jovanovic G, Radovanovic Z, Buric M, Tijanic M (2010) Radiographic enlargement of mandibular canal as first feature of non-Hodgkin`s lymphoma. Dentomaxillofac Radiol 39:383–388. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bennett S, Towsend G (2001) Distribution of the mylohyoid nerve: anatomical variability and clinical implications. Aust Endod J 27:109–111. CrossRefPubMedGoogle Scholar
  24. 24.
    Krasny A, Krasny N, Prescher A (2012) Study of inferior dental canal and its contents using high-resolution magnetic resonance imaging. Surg Radiol Anat 34:687–693. CrossRefPubMedGoogle Scholar
  25. 25.
    Rodella LF, Buffoli B, Labanca M, Rezzani R (2012) A review of the mandibular and maxillary nerve supplies and their clinical relevance. Arch Oral Biol 57:323–334. CrossRefPubMedGoogle Scholar
  26. 26.
    Wilson S, Johns P, Fuller PM (1984) The inferior alveolar and mylohyoid nerves: an anatomic study and relationship to local anesthesia of the anterior mandibular teeth. J Am Dent Assoc 108:350–352. CrossRefPubMedGoogle Scholar
  27. 27.
    Awad MA (2013) Most radiolucent lesions of the jaw are classified as granuloma and cysts in a U.S. population. J Evid Based Dent Pract 13:70–71. CrossRefPubMedGoogle Scholar
  28. 28.
    Kimberly CL, Byers MR (1988) Inflammation of rat molar pulp and periodontium causes increased calcitonin gene-related peptide and axonal sprouting. Anat Rec 222:289–300. CrossRefPubMedGoogle Scholar
  29. 29.
    Oshima M, Miyake M, Takeda M, Kamijima M, Sakamoto T (2011) Staphylococcal enterotoxin B causes proliferation of sensory C-fibers and subsequent enhancement of neurogenic inflammation in rat skin. J Infect Dis 203:862–869. CrossRefGoogle Scholar

Copyright information

© Italian Society of Medical Radiology 2018

Authors and Affiliations

  • Mauricio Augusto Aquino de Castro
    • 1
  • Sâmila Gonçalves Barra
    • 2
    Email author
  • Manuel Oscar Lagravere Vich
    • 3
  • Mauro Henrique Guimaraes Abreu
    • 4
  • Ricardo Alves Mesquita
    • 5
  1. 1.School of DentistryFederal University of Minas GeraisBelo HorizonteBrazil
  2. 2.School of DentistryFederal University of Minas GeraisBelo HorizonteBrazil
  3. 3.University of AlbertaEdmontonCanada
  4. 4.Department of Community and Preventive Dentistry, School of DentistryFederal University of Minas GeraisBelo HorizonteBrazil
  5. 5.Department of Oral Surgery and Pathology, School of DentistryFederal University of Minas GeraisBelo HorizonteBrazil

Personalised recommendations