La radiologia medica

, Volume 120, Issue 9, pp 795–801 | Cite as

Errors in neuroradiology

  • Ferdinando Caranci
  • Enrico Tedeschi
  • Giuseppe Leone
  • Alfonso Reginelli
  • Gianluca Gatta
  • Antonio Pinto
  • Ettore Squillaci
  • Francesco Briganti
  • Luca Brunese


Approximately 4 % of radiologic interpretation in daily practice contains errors and discrepancies that should occur in 2–20 % of reports. Fortunately, most of them are minor degree errors, or if serious, are found and corrected with sufficient promptness; obviously, diagnostic errors become critical when misinterpretation or misidentification should significantly delay medical or surgical treatments. Errors can be summarized into four main categories: observer errors, errors in interpretation, failure to suggest the next appropriate procedure, failure to communicate in a timely and a clinically appropriate manner. Misdiagnosis/misinterpretation percentage should rise up in emergency setting and in the first moments of the learning curve, as in residency. Para-physiological and pathological pitfalls in neuroradiology include calcification and brain stones, pseudofractures, and enlargement of subarachnoid or epidural spaces, ventricular system abnormalities, vascular system abnormalities, intracranial lesions or pseudolesions, and finally neuroradiological emergencies. In order to minimize the possibility of error, it is important to be aware of various presentations of pathology, obtain clinical information, know current practice guidelines, review after interpreting a diagnostic study, suggest follow-up studies when appropriate, communicate significant abnormal findings appropriately and in a timely fashion directly with the treatment team.


Neuroradiology Errors CT MRI 


Compliance with ethical standards

This article does not contain any studies with animals performed by any of the authors. Additional informed consent was obtained from all individual participants whose identifying information is included in this article.

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Borgstede JP, Lewis RS, Bhargavan M et al (2004) RADPEER quality assurance program: a multifacility study of interpretive disagreement rates. J Am Coll Radiol 1:59–65CrossRefPubMedGoogle Scholar
  2. 2.
    Goddard P, Leslie A, Jones A et al (2001) Error in radiology. Br J Radiol 74:949–951CrossRefPubMedGoogle Scholar
  3. 3.
    Berlin L (2007) Radiologic errors and malpractice: a blurry distinction. AJR Am J Roentgenol 189:517–522CrossRefPubMedGoogle Scholar
  4. 4.
    Brady A, Laoide RÓ, McCarthy P et al (2012) Discrepancy and error in radiology: concepts, causes and consequences. Ulst Med J 81:3–9Google Scholar
  5. 5.
    Fitzgerald R (2001) Error in radiology. Clin Radiol 56:938–946CrossRefPubMedGoogle Scholar
  6. 6.
    Caranci F, Brunese L, Reginelli A et al (2012) Neck neoplastic conditions in the emergency setting: role of multidetector computed tomography. Semin Ultrasound CT MR 33(5):443–448CrossRefPubMedGoogle Scholar
  7. 7.
    Pinto A, Caranci F, Romano L et al (2012) Learning from errors in radiology: a comprehensive review. Semin Ultrasound CT MR 33:379–382CrossRefPubMedGoogle Scholar
  8. 8.
    Kundel HL, Nodine CF, Carmody D (1978) Visual scanning, pattern recognition and decision-making in pulmonary nodule detection. Invest Radiol 13:175–181CrossRefPubMedGoogle Scholar
  9. 9.
    Harrigal CL, Erly WK (2007) On-call radiology: community standards and current trends. Semin Ultrasound CT MR 28:85–93CrossRefPubMedGoogle Scholar
  10. 10.
    Renfrew DL, Franken EA, Berbaum KS et al (1992) Error in radiology: classification and lessons in 182 cases presented at a problem case conference. Radiology 183:145–150CrossRefPubMedGoogle Scholar
  11. 11.
    Cervo A, Cocozza S, Saccà F et al (2015) The combined use of conventional MRI and MR spectroscopic imaging increases the diagnostic accuracy in amyotrophic lateral sclerosis. Eur J Radiol 84:151–157CrossRefPubMedGoogle Scholar
  12. 12.
    McCarron MO, Wade C, McCarron P (2014) Optimising neuroimaging effectiveness in a district general hospital. J R Coll Physicians Edinb 44:14–19CrossRefPubMedGoogle Scholar
  13. 13.
    Cooper VF, Goodhartz LA, Nemcek AA Jr et al (2008) Radiology resident interpretations of on-call imaging studies: the incidence of major discrepancies. Acad Radiol 15:1198–1204CrossRefPubMedGoogle Scholar
  14. 14.
    Viertel VG, Babiarz LS, Carone M et al (2012) Quality control in neuroradiology: impact of trainees on discrepancy rates. AJNR Am J Neuroradiol 33:1032–1036PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Babiarz LS, Yousem DM (2012) Quality control in neuroradiology: discrepancies in image interpretation among academic neuroradiologists. AJNR Am J Neuroradiol 33:37–42CrossRefPubMedGoogle Scholar
  16. 16.
    Yaniv G, Mozes O, Greenberg G et al (2013) Common sites and etiologies of residents’ misinterpretation of head CT scans in the emergency department of a level I trauma center. Isr Med Assoc J 15:221–225PubMedGoogle Scholar
  17. 17.
    Walls J, Hunter N, Brasher PM et al (2009) The DePICTORS Study: discrepancies in preliminary interpretation of CT scans between on-call residents and staff. Emerg Radiol 16:303–308CrossRefPubMedGoogle Scholar
  18. 18.
    Erly WK, Berger WG, Krupinski E et al (2002) Radiology resident evaluation of head CT scan orders in the emergency department. AJNR Am J Neuroradiol 23:103–107PubMedGoogle Scholar
  19. 19.
    Stevens KJ, Griffiths KL, Rosenberg J et al (2008) Discordance rates between preliminary and final radiology reports on cross-sectional imaging studies at a level 1 trauma center. Acad Radiol 15:1217–1226CrossRefPubMedGoogle Scholar
  20. 20.
    Filippi CG, Schneider B, Burbank HN et al (2008) Discrepancy rates of radiology resident interpretations of on-call neuroradiology MR imaging studies. Radiology 249:972–979CrossRefPubMedGoogle Scholar
  21. 21.
    Osborn A (2012) Brain imaging, pathology, anatomy. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  22. 22.
    Celzo FG, Venstermans C, De Belder F et al. (2013) Brain stones revisited—between a rock and a hard place. Insights Imaging 4(5):625–635Google Scholar
  23. 23.
    Hoe JW (1989) Computed tomography of nasopharyngeal carcinoma. A review of CT appearances in 56 patients. Eur J Radiol 9:83–90PubMedGoogle Scholar
  24. 24.
    Adachi M, Hosoya T, Haku T et al (1998) Dilated Virchow-Robin spaces: MRI pathological study. Neuroradiology 40:27–31CrossRefPubMedGoogle Scholar
  25. 25.
    Bernard JP, Moscoso G, Renier D et al (2001) Cystic malformations of the posterior fossa. Prenat Diagn 21:1064–1069CrossRefPubMedGoogle Scholar
  26. 26.
    Dimmick SJ, Faulder KC (2009) Normal variants of the cerebral circulation at multidetector CT angiography. Radiographics 29:1027–1043CrossRefPubMedGoogle Scholar
  27. 27.
    Castillo M (2014) Hystory and evolution of brain tumor imaging: insights through radiology. Radiology 273(2 Suppl):S111–S125CrossRefPubMedGoogle Scholar
  28. 28.
    Ambrosetto P, Nicolini F, Zoli M et al (2014) Ophthalmoplegic migraine: from questions to answers. Cephalalgia 34(11):914–919CrossRefPubMedGoogle Scholar
  29. 29.
    Muccio CF, Di Blasi A, Esposito G et al (2013) Perfusion and spectroscopy magnetic resonance imaging in a case of lymphocytic vasculitis mimicking brain tumor. Pol J Radiol 78:66–69PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Caranci F, Cirillo M, Piccolo D et al (2012) A rare case of intraosseous lipoma involving the sphenoclival region. Neuroradiol J 25:680–683CrossRefPubMedGoogle Scholar
  31. 31.
    Smimiotopoulos JG, Murphy FM, Rushing EJ et al (2007) Patterns of contrast enhancement in the brain and meninges. Radiographics 27:525–551CrossRefGoogle Scholar
  32. 32.
    Kramer RA (1977) Vermian pseudotumor: a potential pitfall of CT brain scanning with contrast enhancement. Neuroradiology 13(5):229–230PubMedGoogle Scholar
  33. 33.
    Cirillo L, Leonardi M, Dall’Olio M et al (2012) Complications in the treatment of intracranial aneurysms with silk stents: an analysis of 30 consecutive patients. Interv Neuroradiol 18(4):413–425PubMedCentralPubMedGoogle Scholar
  34. 34.
    van Wessem KJ, Meijer JM, Leenen LP et al (2011) Blunt traumatic carotid artery dissection: still a pitfall? The rationale for aggressive screening. Eur J Trauma Emerg Surg 37:147–154PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Pinto A, Brunese L, Pinto F et al (2012) The concept of error and malpractice in radiology. Semin Ultrasound CT MR 33(4):275–279CrossRefPubMedGoogle Scholar
  36. 36.
    Caranci F, Briganti F, La Porta M et al (2013) Magnetic resonance imaging in brachial plexus injury. Musculoskelet Surg 97:181–190CrossRefGoogle Scholar
  37. 37.
    Daffner RH, Wippold FJ II, Bennett DL et al (2009) ACR appropriateness criteria suspected spine trauma.
  38. 38.
    Grassi R, Rea G, Scaglione M, Brunese L, Scialpi M (2000) Imaging of tracheocele: report of three cases and review of the literature. Radiol Med 100:285–287PubMedGoogle Scholar
  39. 39.
    Lian K, Bharatha A, Aviv RI et al (2011) Interpretation errors in CT angiography of the head and neck and the benefit of double reading. AJNR Am J Neuroradiol 32:2132–2135CrossRefPubMedGoogle Scholar
  40. 40.
    Halsted MJ (2004) Radiology peer review as an opportunity to reduce errors and improve patient care. J Am Coll Radiol 1:984–987CrossRefPubMedGoogle Scholar

Copyright information

© Italian Society of Medical Radiology 2015

Authors and Affiliations

  • Ferdinando Caranci
    • 1
  • Enrico Tedeschi
    • 1
  • Giuseppe Leone
    • 1
  • Alfonso Reginelli
    • 2
  • Gianluca Gatta
    • 2
  • Antonio Pinto
    • 3
  • Ettore Squillaci
    • 4
  • Francesco Briganti
    • 1
  • Luca Brunese
    • 5
  1. 1.Unit of Neuroradiology, Department of Advanced Biomedical SciencesFederico II University of NaplesNaplesItaly
  2. 2.Department of Internal and Experimental Medicine, Magrassi-Lanzara, Institute of RadiologySecond University of NaplesCasertaItaly
  3. 3.Department of RadiologyCardarelli HospitalNaplesItaly
  4. 4.Department of Diagnostic Imaging, Molecular Imaging, Interventional Radiology and RadiotherapyUniversity of Rome Tor VergataRomeItaly
  5. 5.Department of Health ScienceUniversity of MoliseCampobassoItaly

Personalised recommendations