La radiologia medica

, Volume 120, Issue 8, pp 705–713 | Cite as

Fat suppression techniques (STIR vs. SPAIR) on diffusion-weighted imaging of breast lesions at 3.0 T: preliminary experience

  • Sofia Brandão
  • Luísa Nogueira
  • Eduarda Matos
  • Rita Gouveia Nunes
  • Hugo Alexandre Ferreira
  • Joana Loureiro
  • Isabel Ramos



The aim of this work was to perform a qualitative and quantitative comparison of the performance of two fat suppression techniques on breast diffusion-weighted imaging (DWI).

Materials and methods

Fifty-one women underwent clinical breast magnetic resonance imaging, including DWI with short TI inversion recovery (STIR) and spectral attenuated inversion recovery (SPAIR). Four were excluded from the analysis due to image artefacts. Rating of fat suppression uniformity and lesion visibility were performed. Agreement between the two sequences was evaluated. Additionally, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and apparent diffusion coefficient (ADC) values for normal gland, benign and malignant lesions were compared. Receiver operating characteristic analysis was also performed.


From the 52 lesions found, 47 were detected by both sequences. DWI-STIR evidenced more homogeneous fat suppression (p = 0.03). Although these lesions were seen with both techniques, DWI-SPAIR evidenced higher score for lesion visibility in nine of them. SNR and CNR were comparable, except for SNR in benign lesions (p < 0.01), which was higher for DWI-SPAIR. Mean ADC values for lesions were similar. ADC for normal fibroglandular tissue was higher when using DWI-STIR (p = 0.006). Sensitivity, specificity, accuracy and area under the curve values were alike: 84.0 % for both; 77.3, 71.4 %; 80.9, 78.3 %; 82.5, 81.3 % for DWI-SPAIR and DWI-STIR, respectively.


DWI-STIR showed superior fat suppression homogeneity. No differences were found for SNR and CNR, except for SNR in benign lesions. ADCs for lesions were comparable. Findings in this study are consistent with previous studies at 1.5 T, meaning that both fat suppression techniques are appropriate for breast DWI at 3.0 T.


Magnetic resonance imaging Breast diffusion-weighted imaging Fat suppression techniques Image quality 



Grant sponsor from the Portuguese Foundation for Science and Technology; Grant Number: PEst-OE/SAU/UI0645/2011 and SFRH/BD/50027/2009.

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

11547_2015_508_MOESM1_ESM.doc (60 kb)
Supplementary material 1 (DOC 59 kb)


  1. 1.
    Belli P, Costantini M, Bufi E et al (2010) Diffusion-weighted imaging in breast lesion evaluation. Radiol Med 115:51–69PubMedCrossRefGoogle Scholar
  2. 2.
    Jin G, An N, Jacobs MA, Li K (2010) The role of parallel diffusion-weighted imaging and apparent diffusion coefficient (ADC) map values for evaluating breast lesions: preliminary results. Acad Radiol 17:456–463PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Woodhams R, Ramadan S, Stanwell P et al (2011) Diffusion-weighted imaging of the breast: principles and clinical applications. Radiographics 31:1059–1084PubMedCrossRefGoogle Scholar
  4. 4.
    Takahara T, Imai Y, Yamashita T et al (2004) Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 22:275–382PubMedGoogle Scholar
  5. 5.
    Kazama T, Nasu K, Kuroki Y et al (2009) Comparison of diffusion-weighted images using short inversion time inversion recovery or chemical shift selective pulse as fat suppression in patients with breast cancer. Jpn J Radiol 27:163–167PubMedCrossRefGoogle Scholar
  6. 6.
    Bitar R, Leung G, Perng R et al (2006) MR pulse sequences: what every radiologist wants to know but is afraid to ask. Radiographics 26:513–537PubMedCrossRefGoogle Scholar
  7. 7.
    Ribeiro MM, Rumor L, Oliveira M et al (2013) STIR, SPIR and SPAIR techniques in magnetic resonance of the breast: a comparative study. JBiSE 6:395–402CrossRefGoogle Scholar
  8. 8.
    Tannús A, Garwood M (1997) Adiabatic pulses. NMR Biomed 10:423–434PubMedCrossRefGoogle Scholar
  9. 9.
    Luna A, Ribes R, Soto JA (2012) Diffusion MRI outside the brain: a case-based review and clinical applications. Springer-Verlag, Berlin, New YorkCrossRefGoogle Scholar
  10. 10.
    Woodhams R, Matsunaga K, Kan S et al (2005) ADC mapping of benign and malignant breast tumors. Magn Reson Med Sci 4:35–42PubMedCrossRefGoogle Scholar
  11. 11.
    Guo Y, Cai YQ, Cai ZL et al (2002) Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J Magn Reson Imaging 16:172–178PubMedCrossRefGoogle Scholar
  12. 12.
    Partridge SC, McKinnon GC, Henry RG, Hylton NM (2001) Menstrual cycle variation of apparent diffusion coefficients measured in the normal breast using MRI. J Magn Reson Imaging 14:433–438PubMedCrossRefGoogle Scholar
  13. 13.
    Lee J, Lustig M, Kim DH, Pauly JM (2009) Improved shim method based on the minimization of the maximum off-resonance frequency for balanced steady-state free precession (bSSFP). Magn Reson Med 61:1500–1506PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Agrawal G, Su MY, Nalcioglu O et al (2009) Significance of breast lesion descriptors in the ACR BI-RADS MRI lexicon. Cancer 115:1363–1380PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Heverhagen JT (2007) Noise measurement and estimation in MR imaging experiments. Radiology 245(3):638–639PubMedCrossRefGoogle Scholar
  16. 16.
    Bogner W, Gruber S, Pinker K et al (2009) Diffusion-weighted MR for differentiation of breast lesions at 3.0 T: how does selection of diffusion protocols affect diagnosis? Radiology 253:341–351PubMedCrossRefGoogle Scholar
  17. 17.
    Rahbar H, Partridge SC, Eby PR et al (2011) Characterization of ductal carcinoma in situ on diffusion weighted breast MRI. Eur Radiol 21:2011–2019PubMedCrossRefGoogle Scholar
  18. 18.
    Altman DG (1991) Practical statistics for medical research. Chapman & Hall, LondonGoogle Scholar
  19. 19.
    Matsuoka A, Minato M, Harada M et al (2008) Comparison of 3.0-and 1.5-tesla diffusion-weighted imaging in the visibility of breast cancer. Radiat Med 26:15–20PubMedCrossRefGoogle Scholar
  20. 20.
    Lourenço AP, Donegan L, Kahil H, Mainiero MB (2014) Improving outcomes of screening breast MRI with practice evolution: initial clinical experience with 3T compared to 1.5T. J Magn Reson Imaging 39:535–539PubMedCrossRefGoogle Scholar
  21. 21.
    Rahbar H, Partridge SC, DeMartini WB et al (2013) Clinical and technical considerations for high quality breast MRI at 3 Tesla. J Magn Reson Imaging 37:778–790PubMedCrossRefGoogle Scholar
  22. 22.
    Butler RS, Chen C, Vashi R et al (2013) 3.0 Tesla vs 1.5 Tesla breast magnetic resonance imaging in newly diagnosed breast cancer patients. World J Radiol 5:285–294PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Mürtz P, Kaschner M, Träber F et al (2012) Evaluation of dual-source parallel RF excitation for diffusion-weighted whole-body MR imaging with background body signal suppression at 3.0 T. Eur J Radiol 81:3614–3623PubMedCrossRefGoogle Scholar
  24. 24.
    Rahbar H, Partridge SC, DeMartini WB et al (2012) Improved B1 homogeneity of 3 Tesla breast MRI using dual-source parallel radiofrequency excitation. J Magn Reson Imaging 35:1222–1226PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Kuroki Y, Nasu K (2008) Advances in breast MRI: diffusion-weighted imaging of the breast. Breast Cancer 15:212–217PubMedCrossRefGoogle Scholar
  26. 26.
    Kuroki S, Kuroki Y, Nasu K et al (2007) Detecting breast cancer with non-contrast MR imaging: combining diffusion-weighted and STIR imaging. Magn Reson Med Sci 6:21–27PubMedCrossRefGoogle Scholar
  27. 27.
    Thomassin-Naggara I, De Bazelaire C, Chopier J et al (2013) Diffusion-weighted MR imaging of the breast: advantages and pitfalls. Eur J Radiol 82:435–443PubMedCrossRefGoogle Scholar
  28. 28.
    Partridge SC, Singer L, Sun R et al (2011) Diffusion-weighted MRI: influence of intravoxel fat signal and breast density on breast tumor conspicuity and apparent diffusion coefficient measurements. Magn Reson Imaging 29:1215–1221PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Udayasankar UK, Martin D, Lauenstein T et al (2008) Role of spectral presaturation attenuated inversion-recovery fat-suppressed T2-weighted MR imaging in active inflammatory bowel disease. J Magn Reson Imaging 28:1133–1140PubMedCrossRefGoogle Scholar
  30. 30.
    Takanaga M, Hayashi N, Miyati T et al (2012) Influence of b-value on the measurement of contrast and apparent diffusion coefficient in 3.0 Tesla breast magnetic resonance imaging. Nihon Hoshasen Gijutsu Gakkai Zasshi 68:201–208PubMedCrossRefGoogle Scholar
  31. 31.
    Lo GG, Ai V, Chan JK, Li KW et al (2009) Diffusion-weighted magnetic resonance imaging of breast lesions: first experiences at 3 T. J Comput Assist Tomogr 33:63–69PubMedCrossRefGoogle Scholar
  32. 32.
    Sonmez G, Cuce F, Mutlu H et al (2011) Value of diffusion-weighted MRI in the differentiation of benign and malign breast lesions. Wien Klin Wochenschr 123:655–661PubMedCrossRefGoogle Scholar
  33. 33.
    Tsushima Y, Takahashi-Taketomi A, Endo K (2009) Magnetic resonance (MR) differential diagnosis of breast tumors using apparent diffusion coefficient (ADC) on 1.5-T. J Magn Reson Imaging 30:249–255PubMedCrossRefGoogle Scholar
  34. 34.
    Chen X, Li WL, Zhang YL et al (2010) Meta-analysis of quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesions. BMC Cancer 10:693PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Inoue K, Kozawa E, Mizukoshi W et al (2011) Usefulness of diffusion-weighted imaging of breast tumors: quantitative and visual assessment. Jpn J Radiol 29:429–436PubMedCrossRefGoogle Scholar
  36. 36.
    Palle L, Reddy B (2009) Role of diffusion MRI in characterizing benign and malignant breast lesions. Indian J Radiol Imaging 19:287–290PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Woodhams R, Kakita S, Hata H et al (2009) Diffusion-weighted imaging of mucinous carcinoma of the breast: evaluation of apparent diffusion coefficient and signal intensity in correlation with histologic findings. AJR Am J Roentgenol 193:260–266PubMedCrossRefGoogle Scholar
  38. 38.
    Pereira FP, Martins G, Carvalhaes de Oliveira RV (2011) Diffusion magnetic resonance imaging of the breast. Magn Reson Imaging Clin N Am 19:95–110PubMedCrossRefGoogle Scholar
  39. 39.
    Baltzer PAT, Dietzal M, Vag T (2009) Diffusion weighted imaging—useful in all kinds of lesions? A systematic review. Eur Radiol 19:S765–S769CrossRefGoogle Scholar
  40. 40.
    Hatakenaka M, Soeda H, Yabuuchi H et al (2008) Apparent diffusion coefficients of breast tumors: clinical application. Magn Reson Med Sci 7:23–29PubMedCrossRefGoogle Scholar
  41. 41.
    Iima M, Le Bihan D, Okumura R et al (2011) Apparent diffusion coefficient as an MR imaging biomarker of low-risk ductal carcinoma in situ: a pilot study. Radiology 260:364–372PubMedCrossRefGoogle Scholar
  42. 42.
    Nagy Z, Weiskopf N (2008) Efficient fat suppression by slice-selection gradient reversal in twice-refocused diffusion encoding. Magn Reson Med 60:1256–1260PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Medical Radiology 2015

Authors and Affiliations

  • Sofia Brandão
    • 1
  • Luísa Nogueira
    • 2
    • 3
  • Eduarda Matos
    • 4
  • Rita Gouveia Nunes
    • 5
  • Hugo Alexandre Ferreira
    • 5
  • Joana Loureiro
    • 1
  • Isabel Ramos
    • 1
  1. 1.Department of RadiologyCentro Hospitalar de São João-EPE/Faculty of Medicine, University of PortoPortoPortugal
  2. 2.Centro Hospitalar São João-EPE/Faculty of Medicine, University of PortoPortoPortugal
  3. 3.School of Applied Health SciencesOporto Polytechnic Institute (ESTSP/IPP)Vila Nova de GaiaPortugal
  4. 4.Department of Health CommunityInstitute of Biomedical Sciences Abel Salazar of Porto University (ICBAS)PortoPortugal
  5. 5.Institute of Biophysics and Biomedical Engineering (IBEB), Faculty of SciencesUniversity of LisbonLisbonPortugal

Personalised recommendations